
A Fuzzy Approach to Skin Color Detection  

Abstract. Skin detection is a useful tool for many subsequent image processing 
tasks, such as face detection, face tracking or human-computer interfaces. In 
many cases, using a skin color detection scheme is related to a proper 
representation of the color space chosen to interpret image information. In this 
work, we propose a fuzzy system for detecting skin in the RGB color space, so 
that each color plane is modeled using fuzzy sets. As a consequence, the 
development of the membership functions, the inference system and the 
defuzzifying process are described throughout this paper. The experiments have 
been performed with the XM2VTS and VALID face databases and the results 
show that our system has high detection rates and low false positive rates 
compared to other similar skin color detectors. 

Keywords: Image processing, Skin Detection, Fuzzy systems, Machine 
learning. 

1   Introduction  

One of the most active research areas in computer vision is face recognition. Before a 
recognition algorithm is applied, faces must have been segmented and located using 
some detection method. Therefore, detecting a face is the first step for the recognition 
process to be efficiently completed. From this detection, one can utilize different 
methods to recognize users using facial features. 

There are many approaches to face detection, such as knowledge- and 
appearance-based methods, feature invariant algorithms or template matching 
techniques (for further details, see [1], [2], [3]). In this work, we shall focus on a pre-
processing stage for detecting faces in color images. To do this, we assume that the 
problem consists of detecting skin regions in the image, and then the segmented skin 
clusters will be further processed to validate they belong to face regions.  

Many recent proposals are based on the underlying idea of representing the skin 
color in an optimal color space (such as RGB, YIQ or HSV) by means of the so-called 
skin cluster (see [2], [3], [4]). Color information is an efficient tool for identifying 
facial areas if the skin color model can be properly adapted for different lighting 
environments. This fact leads to avoid the use of RGB in practical systems, since the 
red, green and blue components are highly correlated and dependent on lighting 
conditions. However, the RGB space corresponds most closely with the physical 
sensors for colored light such as the cones in the human eye or red, green and blue 
filters in most color CCD sensors. In addition, using a RGB model should simplify 
the design of any algorithm, since there is no need to transform the color spaces. 

As a consequence, our proposal is based on the RGB color space, using fuzzy 
sets instead of traditional color spaces; thus, input color variables are fuzzified and, as 



a result, a pixel is classified after the defuzzifying process is completed. To do this, in 
Section 2 we will revise some skin color detection algorithms and then the designing 
of the fuzzy system for detecting skin is described in Section 3. After that, the 
experiments are outlined and discussed in Section 4 and, finally, we shall conclude 
with some remarks to our work in Section 5. 

2   Skin Color Detection 

As described before, the main goal of skin color modeling is to define a decision rule 
that accurately separates the pixels of an image that correspond with skin from any 
other elements in a scene. There are a wide variety of methods to perform this task 
(see [1], [2] for a complete review); in this section some of them are shown.  

In general, a method to develop a skin classifier consists of defining the bounding 
limits of the regions corresponding to a color which belongs to the skin, by means of 
some numerical (and often empirical) rules, i.e., defining explicitly the skin regions. It 
is clear that the efficiency of the color segmentation stage highly depends on the color 
space chosen. Color spaces with separated luminance and chrominance components, 
like HSV or YCbCr, seem to be appropriate for face detection (see, for instance, [1], 
[3], [4]). However, Albiol et al. [2] shown that if an optimum skin detector is 
designed for every color space, their performance will be almost the same. 

The main advantage of this method is the simplicity of the skin detection rules, 
which permit a fast classification of pixels. The major drawback is the difficulty in 
finding both robust color spaces and reliable decision rules for a convenient skin 
detection. Nevertheless, for any color space, the problem to be solved can be 
summarized as: finding the optimal bounding limits for robust skin color detection. 

On the other hand, there is a set of techniques which estimate the distribution of 
skin color by means of a training phase, without deriving an explicit model. These 
methods are often referred as non-parametric skin models. Generally, they create a 
skin probability map (SPM) [5], which consists of assigning a probability to each 
point in different color spaces. Finally, other methods include parametric skin 
distribution models, such as the Gaussian skin color model or the elliptic boundary 
model [1], [2].  

Non parametric methods achieve low computation times for both training and 
classifying skin pixels, and they do not depend on the skin distribution shape or on the 
selection of the color space, either. However, they require a huge storage capacity and 
that the training must be performed with a representative dataset.   

Parametric methods can also be fast, as they make it possible to interpolate data 
and to generalize the training phase for incomplete data.  In spite of this, their 
performance highly depends on the skin distribution shape and many parametric 
models ignore the static non-skin color. Subsequently, this fact leads to high false 
positive rates compared with non-parametric methods.   

As a consequence, our proposal consists of taking the main advantages of 
explicitly defined skin models, i.e., the simplicity of their decision rules, and 
combining them with the main benefits of non-parametric skin models, that is to say, 
low computation times for training and classifying. To do this, our method includes a 



fuzzy model for detecting skin in color images. This model is explained in the 
following section. 

3   A Fuzzy System for Detecting Skin 

In any image segmentation scheme, there is a high level of uncertainty for a classifier 
to automatically obtain an optimum segmentation. This fact can be also extended to 
face detection and, in particular, to skin color segmentation. Thus, we find that 
applying fuzzy theory can be a convenient way to obtain good detection rates, since a 
fuzzy set-theoretic model provides a mechanism to represent and manipulate 
uncertainty within an image. 

Color image segmentation using fuzzy classification is a pixel-based segmentation 
method. This method assigns a color class to each pixel of an input image by applying 
a set of fuzzy rules on it. We can use this approach to achieve our goal: a pixel can be 
classified as ‘skin’ or ‘non-skin’ according to a set of fuzzy rules extracted from a 
training stage using different color spaces. To do this, each color plane will be 
considered as a fuzzy set, so that the skin detection is performed through fuzzy 
functions representing the membership degree of each pixel to the different classes. 
Let us define some terms first. 

Definition 1. A color vector c ∈ C, where C is a color space, of a pixel p is defined as 
a l-tuple of color components c(p) = {c1(p), c2(p),…,cl(p)},  where ci(p), for i = 
1,2,…l, may have N different values. 

 
For instance, for the RGB color space, l = 3 and c(p) = {rp, gp, bp}, where rp, gp, bp 

∈ [0, 255]. 

Definition 2. Given a color image I of size W = n × m pixels, where each pixel is 
defined by a color vector c in a color space C, so that c(p) = {c1(p), c2(p),…,cl(p)}, 

Ip∈∀ , the histogram of C, H(C), is defined as a q × l array H(C) = {f1, f2, …, fl}, 
such that each fi is the frequency vector, using q bins, of the color component ci, for i 
= 1,2,…l, on the image I. 
 

As a result, the value of each bin is the number of pixels in image I having the 
color ci. If H(C) is normalized by W, then H(C) takes the color space C into the 
interval [0, 1]; that is, H(C) represents the probability distribution of each colour ci to 
be present in image I. According to Zadeh’s theory [6], a fuzzy set is a pair (A, m) 
where A is a set and m: A → [0, 1]. This can be applied to the color histogram, where 
the fuzzy set can be defined as the pair (C, H), where C is the color space and H: C → 
[0, 1] is the normalized histogram. For each c ∈ C, H(c) is the grade of membership 
of c, so that c ∈ (C, H) ↔ c ∈ C AND H(c) ≠ 0. 

Some previous works have modeled color spaces by means of fuzzy sets and 
relations. For the HSV space and its variants, the hue component has been defined 
through a fuzzy representation to take into account the non-uniformity of colors 



distribution. Thus, Truck et al. proposed to represent colors with trapezoidal or 
triangular fuzzy subsets, associating colors with fuzzy sets [7]; Herrera and Martinez 
use fuzzy linguistic hierarchies with different number of labels, depending on the 
desired granularity [8]. Some other approaches, such as [9], [10], use other common 
spaces for color-based classification, such as YCbCr or CIELab. However, there are 
little works dealing with fuzzy RGB classification and a technique for classifying skin 
color pixels in the RGB color space using a fuzzy approach has not been reported yet. 

In order to use this fuzzy approach, we must calculate first the normalized 
histogram for the RGB color space for a training set, H(C) = {fR, fG, fB}. Since the 
skin detection will be used a pre-processing task for detecting a face in an image, for 
the training of the system let us consider two different face databases: 

− The XM2VTS face database [11] contains 8 recordings of 295 subjects each, 
acquired over a period of 4 months. The background in this set of images is 
homogeneous, with a good contrast for detecting skin. 

− The VALID database [12] consists of five recording sessions of 106 subjects over 
a period of one month. One session is recorded in a studio with controlled lighting 
and no background noise, the other 4 sessions are recorded in office type scenarios. 
 
The training has been performed using a set of 100 images from both databases, 

extracting only the skin information, and using different ethnic groups and changing 
lighting conditions. 

 
The results after obtaining H(C) are shown in Fig. 1(a).  
 

       
 (a)                                    (b) 

Fig. 1. Creation of a fuzzy system for the RGB model. (a) Computation of H(C) for the training 

set. (b) Gaussian approximation of H(C) for each color plane. 

 



From these results, the membership functions for the skin color in each plane can 
be modeled using a Gaussian function, such that: 
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2 is the variance of each fuzzy set ci. The results of the model for the skin pixels are 

shown on Fig. 1(b). 
Finally, for the background pixels, i.e., the non-skin pixels in the image, let us 

consider a variation of the model introduced by Murthy and Pal [13], which identifies 
the fuzziness in the transition region between the object (in this case, the skin) and the 
background classes. Thus, the membership value of a point to the object is determined 
by applying an S-function and a Z-function to the each color plane, so that: 
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where the values bSi, bZi are the cross-over points of the fuzzy sets defined by 
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value of ci = bSi  (or bZi) that is equal to 0.5; {cR, cG, cB}∈ [0, 255]; aSi = γZi = 
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; aZi = 0.5·γZi; and γSi = 1.5·aSi.  

The results for the models of the fuzzy skin and non-skin classes are shown in Fig. 
2; we have three classes for each color fuzzy set. 



 
Fig. 2. Modeling the Skin and Non-skin Classes for the RGB color space. 

Now, given an input image I, for any pixel p ∈ I, its R, G, B components are 
fuzzified, according to the parameters defined in Eqs. (1)-(3). Then, the inferencing 
system processes each pixel and, by using the available knowledge in the form of IF-
THEN rules, it identifies and classifies skin color pixels in the output image. This 
procedure results in the assignment of one output fuzzy set for each rule. A total of 12 
rules were extracted for our system. The min–max inferencing technique was used, 
where the output membership function of each rule is clipped off at a height 
corresponding to the rule premise’s computed degree of truth. The combined fuzzy 
output membership function is built by combining the results of all the fuzzy rules. If 
an output fuzzy set is activated by more than one rule, the maximum of all activations 
is considered in the construction of the combined output membership function. 

The Mamdani method was chosen as the defuzzification procedure, which means 
that the fuzzy sets obtained by applying each inference rule to the input data were 
joined through the add function; the output of the system was then computed as the 
centroid of the resulting membership function.  

After the fuzzy inference system has been defined, in the following section we 
describe the results of the experiments performed for the different databases.  

4   Experimental Results 

Let us show now the results of some experiments completed for our model and 
compare it with some other existing methods. The tests have been performed with the 



XM2VTS (homogeneous background) and the VALID (homogeneous and more 
complex backgrounds) face databases, as described in Section 3.  

According to the fuzzy skin detector defined before, Fig. 3 shows the results for 
different images in both databases. The images include different gender and ethnic 
groups, and –for the VALID database– complex backgrounds and changing lighting 
conditions. 

    
 

    
Fig. 3. Results of the fuzzy skin detector for different images. First row: some images from the 

XM2VTS database. Second row: some images from the VALID database. 

From these results, we must point out that the proposed method leads to very 
accurate results for the XM2VTS database, which has both good illumination 
conditions and high contrast between the foreground and the background. In the case 
of the VALID database, the results of the skin detector are also quite precise, in spite 
of the unfavorable conditions for achieving good quality results. Some errors appear, 
mainly due to background colors that are very similar (or even identical) to skin 
colors; in addition, the lighting conditions will affect the final result. However, with a 
post-processing stage for detecting a face from the skin segmentation results, most of 
these errors will be corrected. 

Finally, let us compare our system with some other existing algorithms for skin 
color detection. First, an explicitly defined skin region algorithm for the RGB color 
space is used; in [14], a pixel (R0, G0, B0) is classified as skin if: 

(i) ,204095 000 >∧>∧> BGR  and 
(ii) ,15),,min(),,max( 000000 >− BGRBGR  and 
(iii) .15 000000 BRGRGR >∧>∧>−  

(4) 

On the other hand, a skin probability map (SPM) approach to the RGB space is 
also taken into account. For this method, given skin and non-skin histogram models, a 
skin pixel classifier is defined using, for instance, the Bayes’ theorem. Then, the 
inequality P(skin|c) ≥ T can be used as a skin detection rule, where T is a selected 
threshold value and P(skin|c) is the probability of observing skin, given a concrete c 
color value (see [1], [5] for further details). For completion, we have included SPMs 
for the HSV and YCbCr spaces, as well. 



Figs. 4-6 show the results for some images for the proposed and existing 
segmentation methods. In every case, for the SPM models, we show the threshold T 
that minimizes the number of false positives and false negatives. 

 
 

      
 

     
Fig. 4. Results from the XM2VTS database. From left to right, top to bottom: original image; 

results for explicit RGB rules; results for SPM in RGB, T = 0.12; results for SPM in HSV, T = 

0.06; results for SPM in YCbCr, T = 0.04; results for our model. 

 

      
 

     
Fig. 5. Results from the VALID database. From left to right, top to bottom: original image; 

results for explicit RGB rules; results for SPM in RGB, T = 0.25; results for SPM in HSV, T = 

0.37; results for SPM in YCbCr, T = 0.43; results for our model. 

 



      
 

     
Fig. 6. Results from the VALID database with a complex background. From left to right, top to 

bottom: original image; results for explicit RGB rules; results for SPM in RGB, T = 0.15; 

results for SPM in HSV, T = 0.05; results for SPM in YCbCr, T = 0.03; results for our model. 

Finally, in Table 1 we show the results of the false positive (FP) and false negative 
(FN) rates, and correct skin detection rate for the images in the experiments, for all 
the models considered in our implementation. 

Table 1.  Comparison between algorithms 

Algorithm 

XM2VTS VALID Global Results 

FP(%) FN(%) Correct(%) FP(%) FN(%) Correct(%) FP(%) FN(%) Correct(%) 

Explicit RGB 
rules 

2.13 3.07 94.80 4.67 9.28 86.05 2.97 5.14 91.89 

SPM RGB 3.67 3.20 93.13 8.74  13.55 77.71 5.36 6.65 87.99 

SPM HSV 1.62 3.09 95.29 4.38  8.07 87.55 2.54 4.75 92.71 

SPM YCbCr 2.51  2.61 94.88 3.46 5.74 90.80 2.82 3.65 93.53 

Fuzzy RGB 1.54 2.73 95.73 2.11 5.57 92.32 1.73  3.67 94.60 

 
The results confirm the validity of the fuzzy RGB skin detector; the global results 

achieve a detection rate of 94.60% (the highest one from the compared methods), with 
only a 1.73% of false positives (the lowest one from the compared methods). The 
performance is better than the other compared RGB proposals; when there is a 
homogeneous background, with good lighting conditions, almost any skin detector 
gives precise results, but when we use unconstrained environments, it is more difficult 
to get a good skin segmentation. This fact can be clearly noticed for the VALID 
database and the RGB space for both the explicitly defined regions and the SPM 
methods, where many false positives and negatives appear and the correct detection 
rates are far from being optimal, especially for the SPM approach. Unlike the other 



RGB proposals, our method behaves well for complex backgrounds and changing 
illumination, giving very accurate results. 

On the other hand, the FP and FN rates show that the fuzzy RGB skin detector has 
a comparable behavior than other methods in color spaces traditionally used for skin 
color detection, such as HSV or YCbCr. From Fig. 7 it can be extracted that when 
there is a strong presence of a red object, almost any skin segmentation method gives 
false positives for the pixels in the object; although the HSV and YCbCr spaces 
provide a good segmentation result, they can’t remove many of the red pixels from 
the objects in the background, whereas the fuzzy RGB achieves a more appropriate 
result. However, there are some situations with unconstrained backgrounds where it is 
rather difficult for any skin detector to generate a proper segmentation. Thus, the 
performance of the last three algorithms in Table 1 is comparable, so that any of them 
can be used as a pre-processing stage for more complex algorithms, such as a face 
recognition system or a human-machine interface. 

To sum up, the fuzzy system has high correct detection rates and, as a conclusion, 
our method is a suitable technique for segmenting skin in different environment 
conditions, such as complex backgrounds or changing lighting conditions. 

5   Conclusions 

Face detection is object of intensive research in the last few years and this tendency is 
increasing, since it is the initial and, perhaps, the critical process for an integral face 
recognition system. One of the methods used for detect a face is to use a skin 
segmentation scheme, which has been proved to be highly effective in many 
applications. 

In this work, a fuzzy skin color detector using the RGB color space has been 
proposed. Each color plane has been modeled using different fuzzy sets for the skin 
and non-skin classes and the inference system and defuzzifying process have been 
exposed. Experiments show that our method leads to very accurate skin detection 
results with low false positive and false negative rates.   

As a future work, we propose to extend the fuzzy system to other color spaces, 
such as HSV or YCbCr. Then, some algorithm for detecting a face in an image must 
be developed, as well. It would be also desirable to use our algorithm with other 
databases and in a real environment to test the validity of our fuzzy system proposal. 
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