
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 1, FEBRUARY 2012 117

Combining Multiobjective Optimization with
Differential Evolution to Solve Constrained

Optimization Problems
Yong Wang, Member, IEEE, and Zixing Cai, Senior Member, IEEE

Abstract—During the past decade, solving constrained opti-
mization problems with evolutionary algorithms has received
considerable attention among researchers and practitioners. Cai
and Wang’s method (abbreviated as CW method) is a recent
constrained optimization evolutionary algorithm proposed by
the authors. However, its main shortcoming is that a trial-and-
error process has to be used to choose suitable parameters.
To overcome the above shortcoming, this paper proposes an
improved version of the CW method, called CMODE, which
combines multiobjective optimization with differential evolu-
tion to deal with constrained optimization problems. Like its
predecessor CW, the comparison of individuals in CMODE is
also based on multiobjective optimization. In CMODE, however,
differential evolution serves as the search engine. In addition,
a novel infeasible solution replacement mechanism based on
multiobjective optimization is proposed, with the purpose of
guiding the population toward promising solutions and the
feasible region simultaneously. The performance of CMODE is
evaluated on 24 benchmark test functions. It is shown empirically
that CMODE is capable of producing highly competitive results
compared with some other state-of-the-art approaches in the
community of constrained evolutionary optimization.

Index Terms—Constrained optimization problems, constraint-
handling technique, differential evolution, multiobjective opti-
mization.

I. Introduction

IN REAL-WORLD applications, most optimization prob-
lems are subject to different types of constraints. These

problems are known as constrained optimization problems
(COPs). In the minimization sense, general COPs can be
formulated as follows:

minimize f (�x)

subject to gj(�x) ≤ 0, j = 1, . . . , q

hj(�x) = 0, j = q + 1, . . . , m

Manuscript received December 15, 2008; revised July 2, 2009, April 18,
2010, July 12, 2010, September 3, 2010, and November 1, 2010; accepted
November 4, 2010. Date of publication January 11, 2012; date of current
version January 31, 2012. This work was supported in part by the National
Natural Science Foundation of China, under Grants 60805027, 90820302, and
61175064, in part by the Research Fund for the Doctoral Program of Higher
Education of China, under Grant 200805330005, and in part by the Graduate
Innovation Fund of Hunan Province of China, under Grant CX2009B039. This
paper was recommended by Associate Editor C. A. Coello Coello.

The authors are with the School of Information Science and En-
gineering, Central South University, Changsha 410083, China (e-mail:
ywang@csu.edu.cn; zxcai@csu.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2010.2093582

where �x = (x1, . . . , xn) ∈ S,S is the decision space defined by
the parametric constraints:

Li ≤ xi ≤ Ui, 1 ≤ i ≤ n (1)

gj(�x) is the jth inequality constraint, and hj(�x) is the (j −q)th
equality constraint.

The feasible region � ⊆ S is defined as follows:

� = {�x|gj(�x) ≤ 0, j = 1, . . . , q;

hj(�x) = 0, j=q + 1, . . . , m; �x∈S}. (2)

If an inequality constraint satisfies gj(�x) = 0 (j ∈ {1, . . . , q})
at any point �x ∈ �, we say it is active at �x. All equality
constraints hj(�x) (j = q + 1, . . . , m) are considered active at
all points of �.

The use of evolutionary algorithms (EAs) for COPs has
significantly grown in the past decade, giving rise to a large
number of constrained optimization evolutionary algorithms
(COEAs) [2], [3]. It is necessary to note that EAs are un-
constrained optimization methods that need additional mech-
anisms to deal with constraints when solving COPs [4]. As a
result, a variety of constraint-handling techniques targeted at
EAs have been developed [5].

Penalty function methods are the most common constraint-
handling technique. They use the amount of constraint viola-
tion to punish an infeasible solution so that it is less likely
to survive into the next generation than a feasible solution.
The main limitation of penalty function methods is that they
require fine tuning of the penalty factors. In order to address
this limitation, methods based on the preference of feasible
solutions over infeasible solutions have been proposed. For
example, Deb [6] proposed a feasibility-based rule to pair-
wise compare individuals:

1) any feasible solution is preferred to any infeasible solu-
tion;

2) among two feasible solutions, the one that has a better
objective function value is preferred;

3) among two infeasible solutions, the one that has a
smaller degree of constraint violation is preferred.

In addition, some researchers have employed multiobjective
optimization techniques to handle constraints. The main idea
of this kind of method is that after converting COPs
into unconstrained multiobjective optimization problems,

1089-778X/$31.00 c© 2012 IEEE

118 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 1, FEBRUARY 2012

multiobjective optimization techniques are exploited to tackle
the converted problems [7].

Although some researchers have suggested that multiob-
jective optimization techniques are not suitable for solving
COPs [8], [9], this kind of technique has still attracted
considerable interest in the community of constrained evo-
lutionary optimization in recent years and many approaches
have been proposed [1], [5], [7], [10]–[16]. Among these
approaches, CW [1] is a very recent one. It consists of
two main components: the first is the population evolution
model, and the second is the infeasible solution archiving and
replacement mechanism. However, as pointed out in [1] and
[15], the main drawback of this approach is that values must
be determined for some problem-dependent parameters, such
as the expanding factor in simplex crossover [17], which limits
its real-world applications.

The main motivation of this paper is to overcome the
above drawback of CW and, as a result, a new method,
called CMODE, is proposed. Apart from using differential
evolution (DE) as the search engine, CMODE also proposes
a novel infeasible solution replacement mechanism based
on multiobjective optimization. Twenty-four benchmark test
functions collected for the special session on constrained
real-parameter optimization of the 2006 IEEE congress on
evolutionary computation (IEEE CEC2006) [18] are used
to demonstrate the effectiveness of CMODE. Experimental
results suggest that the performance of CMODE is very
competitive with that of several state-of-the-art methods in the
community of constrained evolutionary optimization.

The remainder of this paper is organized as follows. Sec-
tion II introduces DE and briefly reviews the previous work
on constrained optimization using DE. Section III describes
our proposal in detail. The experimental results and the
performance comparisons are given in Section IV. Section V
discusses the effectiveness of some mechanisms proposed
in this paper and the effect of parameter settings on the
performance of CMODE. Finally, Section VI concludes this
paper and provides some possible paths for future research.

II. DE and Its Application in Constrained

Evolutionary Optimization

DE, proposed by Storn and Price [19] in 1995, is an efficient
and simple EA. The initial population of DE is randomly
generated within the decision space. The population of DE
consists of Np n-dimensional vectors:

�xi,t = (xi,1,t , xi,2,t , . . . , xi,n,t), i = 1, 2, . . . , Np (3)

where t denotes the generation number. The idea behind DE
is to take advantage of mutation and crossover operations to
yield a trial vector �ui,t for each target vector �xi,t . Thereafter,
a selection operation is executed between the trial vector �ui,t

and the target vector �xi,t .
Several variants of DE have been proposed. In this paper, the

most often used DE algorithm (i.e., DE/rand/1/bin) is utilized.
The mutation, crossover, and selection operations of this DE
algorithm are explained as follows.

A. Mutation Operation

Taking into account each target vector �xi,t at generation t, a
mutant vector �vi,t = (vi,1,t , vi,2,t , . . . , vi,n,t) is defined by

�vi,t = �xr1,t + F · (�xr2,t − �xr3,t) (4)

where indexes r1, r2, and r3 represent mutually different inte-
gers that are different from i and that are randomly generated
over [1, Np], and F is the scaling factor.

In this paper, if a component vi,j,t of a mutant vector �vi,t

violates the boundary constraint, this component is reset as
follows:

vi,j,t =

{
min{Uj, 2Lj − vi,j,t}, if vi,j,t < Lj

max{Lj, 2Uj − vi,j,t}, if vi,j,t > Uj.
(5)

B. Crossover Operation

The target vector �xi,t is mixed with the mutant vector �vi,t,

using a binomial crossover operation (also known as uniform
discrete crossover), to form the trial vector:

ui,j,t =

{
vi,j,t, if randj(0, 1) ≤ Cr or j = jrand

xi,j,t, otherwise
(6)

where i = 1, 2, . . . , Np,j = 1, 2, . . . , n, index jrand is a
randomly chosen integer within the range [1, n], randj(0, 1) is
the jth evaluation of a uniform random number generator, and
Cr ∈ [0, 1] is the crossover control parameter. The condition
“j = jrand” is introduced to ensure that the trial vector �ui,t

differs from its target vector �xi,t by at least one element.

C. Selection Operation

After evaluating the target vector �xi,t and the trial vector
�ui,t, the trial vector �ui,t is compared against the target vector
�xi,t and the better one is preserved for the next generation:

�xi,t+1 =

{�ui,t, if f (�ui,t) ≤ f (�xi,t)
�xi,t, otherwise.

(7)

Many studies have been conducted to solve COPs by DE.
Below, we briefly review some of them.

Storn [20] proposed a method called CADE, which com-
bines the idea of constraint adaptation with DE. CADE first
relaxes all constraints so that all individuals in the population
are feasible and then gradually tightens the constraints. In
addition, CADE employs the concept of aging to prevent a
vector from surviving for excessive generations. Lin et al. [21]
introduced a hybrid DE with a multiplier updating method to
solve COPs. Lampinen [22] extended DE to handle nonlinear
constraint functions. In this method, when the trial vector
and the target vector are infeasible, the one which Pareto
dominates the other in the constraint space will be selected.
In addition, if these two vectors are incomparable with each
other, the trial vector is allowed to enter the population
to avoid stagnation. Runarsson and Yao [8] proposed an
improved version of stochastic ranking [23]. This method
contains a differential variation operator, which resembles
the mutation operator of DE. Mezura-Montes et al. [24]
presented an alternative method which can be considered
as the first proposal to incorporate a diversity mechanism

WANG AND CAI: COMBINING MULTIOBJECTIVE OPTIMIZATION WITH DIFFERENTIAL EVOLUTION TO SOLVE OPTIMIZATION PROBLEMS 119

into DE. In this method, the diversity mechanism allows
infeasible solutions with a good value of the objective function,
regardless of the degree of constraint violation, to remain in
the population. Furthermore, each parent is able to generate
more than one offspring in this method. DE, coupled with a
cultural algorithm is proposed by Becerra and Coello Coello
[25].

Besides the above methods, several related approaches were
proposed at the IEEE CEC2006 special session on constrained
real-parameter optimization. Takahama and Sakai [26] pro-
posed εDE which applies an ε-constrained method to DE. In
this method, a gradient-based mutation is introduced, which
uses the gradient of constraints at an infeasible point to find a
feasible point. Huang et al. [27] introduced a self-adaptive DE
for COPs, in which the choice of the trial vector generation
strategies and the two control parameters (F and Cr) are not
required to be predefined. During evolution, the suitable
strategies and parameter settings are gradually self-adapted
according to the learning experience. Tasgetiren and Suganthan
[28] presented a multi-populated DE. This method regroups
the individuals in certain periods of a run. Kukkonen and
Lampinen [29] proposed a generalized DE to solve COPs.
In this approach, the trial vector is selected to replace the
target vector if it weakly dominates the target vector in the
space of constraint violations or objective function. Brest
et al. [30] also proposed a self-adaptive DE, in which three
DE strategies are applied and the control parameters F and Cr

of DE are self-adapted. Mezura-Montes et al. [31] presented
a modified DE for COPs, in which a new mutation operator
is designed. The new mutation operator combines information
of both the best solution in the current population and the
current parent to find new search directions. Zielinski and Laur
[32] integrated DE with Deb’s feasibility-based rule [6] for
constrained optimization.

More recently, Mezura-Montes and Cecilia-López-Ramírez
[33] established a performance comparison of four bio-
inspired algorithms with the same constraint-handling tech-
nique (i.e., Deb’s feasibility-based rule) to solve 24 bench-
mark test functions. These four bio-inspired algorithms are
DE, genetic algorithm, evolution strategy, and particle swarm
optimization. The overall results indicate that DE is the most
competitive among all of the compared algorithms for this set
of test functions. In addition, Gong and Cai [34] proposed
a multiobjective DE algorithm for constrained optimization.
This method uses orthogonal design to generate the initial
population, and the comparison of the individuals is based
on Pareto dominance. Takahama and Sakai [35] proposed
an improved ε-constrained DE to solve COPs with equality
constraints. In this approach, dynamic control of allowable
constraint violation for equality constraints is introduced, and
the amount of allowable violation is specified by the ε-level.
Zhang et al. [36] proposed a dynamic stochastic selection
scheme based on stochastic ranking [23] and combined it with
the multimember DE [24]. Zielinski and Laur [37] investigated
several stopping criteria for DE in constrained optimization,
which consider the improvement, movement or distribution
of population members to determine when DE should be
terminated.

Fig. 1. Graph representation for f(�x). The Pareto optimal set is mapped to
the Pareto front. The feasible region � is mapped to the solid segment. The
global optimum �x∗ is mapped to the intersection of the Pareto front and the
solid segment. The search space S is mapped to points on and above the
Pareto front.

III. Proposed Approach

A. CW Approach

In the CW approach [1], the degree of constraint violation
of an individual �x on the jth constraint is defined as

Gj(�x) =

{
max{0, gj(�x)}, 1 ≤ j ≤ q

max{0, |hj(�x)| − δ}, q + 1 ≤ j ≤ m
(8)

where δ is a positive tolerance value for equality constraints.
Then G(�x) =

∑m
j=1 Gj(�x) reflects the degree of constraint

violation of the individual �x.
In principle, the CW approach converts COPs into mul-

tiobjective optimization problems (MOPs) in which two ob-
jectives are considered: the first is to optimize the original
objective function f (�x), and the second is to minimize the
degree of constraint violation G(�x). For the sake of clarity, let
f(�x) = (f1(�x), f2(�x)) = (f (�x), G(�x)).

An important concept of multiobjective optimization is that
of Pareto dominance. In the context of this paper, an individual
�xi is said to Pareto dominate another individual �xj (denoted
as �xi ≺ �xj) if ∀k ∈ {1, 2}, fk(�xi) ≤ fk(�xj), and ∃k ∈ {1, 2},
such that fk(�xi) < fk(�xj). The nondominated individuals of
the population refer to those that are not Pareto dominated
by any member of the population. The set of nondominated
individuals is called the Pareto optimal set. The Pareto front
is the image of the Pareto optimal set in the objective space.
According to the above definitions, the detailed illustration of
f(�x) is shown in Fig. 1 [1].

The CW approach attempts to optimize f(�x) through mul-
tiobjective optimization techniques. As analyzed in [1], the
essential difference between the solution of f(�x) and the
solution of the general MOPs is that the aim of the former
is to find the global optimal solution in the feasible region
(i.e., the global optimum in Fig. 1); however, the goal of
the latter is to obtain a final population with a diversity of
nondominated individuals, i.e., the image of the population
in the objective space should be distributed as uniformly as
possible in the Pareto front (i.e., the Pareto front in Fig. 1).
Therefore, the solution of f(�x) is not equivalent to that of
the general MOPs. Moreover, it is unnecessary to uniformly
distribute the nondominated individuals found during evolution
when solving f(�x).

120 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 1, FEBRUARY 2012

Realizing the above difference, the CW approach only
exploits Pareto dominance that is often used in multiobjective
optimization to compare the individuals in the population.
The CW approach includes two main components: the first
is the population evolution model inspired by the proposal
in [38], and the second is the infeasible solution archiving
and replacement mechanism which is proposed in the hope of
steering the population toward the feasible region. A detailed
description of the CW approach has been presented in [1]. The
CW approach has been tested on 13 benchmark test functions
collected by Runarsson and Yao [23]. It has been shown to
be successful for solving COPs with different constraint types,
especially COPs with equality constraints. However, the major
limitation of this method is that for a specific problem, one
often needs to carry out extensive tuning of the parameters,
such as the expanding factor in the simplex crossover [17].

B. CMODE Approach

To overcome the shortcomings of the CW approach, this
paper proposes a new implementation of the CW approach,
which we call CMODE.

At each generation, CMODE maintains:
1) a population of Np individuals, i.e., P(t) =

{�x1, �x2, . . . , �xNp
} where t denotes the generation

number;
2) their objective function values f (�x1), f (�x2), . . . , f (�xNp

)
and their degree of constraint violations G(�x1),
G(�x2), . . . , G(�xNp

).
The framework of CMODE is shown in Fig. 2. Initially,

population P(t) is randomly produced in the decision space
defined by [Li, Ui],1 ≤ i ≤ n. Subsequently, λ individuals
(set Q) are randomly chosen from P(t) to yield λ offspring (set
C) by DE operations and are deleted from P(t). Thereafter, the
nondominated individuals (set R) are identified from C and re-
place the dominated individuals (if they exist) in Q. As a result,
Q is updated. After combining the updated Q with P(t), the up-
date of P(t) is also achieved. Additionally, if R contains only in-
feasible solutions, meaning C is also entirely composed of in-
feasible solutions, then the infeasible solution with the lowest
degree of constraint violation in R is stored into archive A. Ev-
ery k generations, all of the infeasible individuals in A are used
to replace the same number of individuals in P(t). It is note-
worthy that the above replacement is executed based on an in-
feasible solution replacement mechanism inspired by multiob-
jective optimization. The above procedure is repeated until the
maximum number of function evaluations (FES) is reached.

The detailed features of our algorithm are the following.
1) DE operations: In CMODE, DE is considered to be

the search engine. However, it is important to note that we
only use DE’s crossover and mutation operations to create
the offspring population. Moreover, the selection operation
of DE is not applied. With respect to the classical DE, the
trial vector created by crossover and mutation operations is
directly compared with its target vector and the better one
will survive into the next population. Nevertheless, in this
paper only the nondominated individuals of the offspring pop-
ulation are identified and exploited to replace the dominated
individuals (if they exist) in the parent population, since the

nondominated individuals represent the most important feature
of the population to which they belong [1].

2) Infeasible solution replacement mechanism: This mecha-
nism consists of two main parts: the deterministic replacement
and the random replacement.

The primary motivation of the deterministic replacement is
to enhance the quality and feasibility of the individuals in pop-
ulation P(t) simultaneously, by replacing the worst individuals
in P(t) with the infeasible solutions in archive A. The worst in-
dividuals in P(t) are measured by two performance indicators.

The first performance indicator measures the quality of
the individuals. We consider that the greater the number of
individuals Pareto dominating a given individual, the worse
the quality of this individual. According to this viewpoint, the
fitness assignment scheme proposed by Zitzler et al. [39] for
MOPs is chosen as the first performance indicator since in this
paper, COPs are treated as MOPs. As in [39], each individual
�xi in population P(t) is assigned a strength value s(�xi). s(�xi)
represents the number of individuals in P(t) Pareto dominated
by �xi, that is

s(�xi) = #{�xj|�xj ∈ P(t) ∧ �xi ≺ �xj}, i = 1, . . . , Np (9)

where # is the cardinality of the set. On the basis of the
strength value, the rank value R1(�xi) of the individual �xi is
calculated using the following equation:

R1(�xi) =
∑

�xj∈P(t)

⋂
�xj≺�xi

s(�xj), i = 1, . . . , Np. (10)

The second performance indicator measures the feasibility of
the individuals. In this performance indicator, the individuals
in population P(t) are sorted according to the following criteria:

a) the feasible solutions are listed in front of the infeasible
solutions;

b) the feasible solutions are sorted in ascending order by
their objective function values;

c) the infeasible solutions are sorted in ascending order by
their degree of constraint violations.

After the above process, each individual is assigned another
rank value R2(�xi) by subtracting 1 from its sequence number.

A final objective function is established by adding the
normalized rank values of R1(�xi) and R2(�xi) together

F (�xi) =
R1(�xi)

max
j=1,...,Np

R1(�xj)
+

R2(�xi)

max
j=1,...,Np

R2(�xj)
, i = 1, . . . , Np.

(11)
In (11), R1(�xi) and R2(�xi) are normalized so that their values

are of an order of magnitude of 1.
In the deterministic replacement, all of the individuals

in archive A are selected to replace the same number of
individuals with the largest F (�xi) in population P(t). The first
term on the right-hand side of (11) aims to eliminate the
worst individuals in the population on the basis of Pareto
dominance, and as a result, to motivate the population toward
the solutions with higher quality. However, it is necessary
to emphasize that this term does not consider the feasibility
of the individuals explicitly and cannot effectively guide the

WANG AND CAI: COMBINING MULTIOBJECTIVE OPTIMIZATION WITH DIFFERENTIAL EVOLUTION TO SOLVE OPTIMIZATION PROBLEMS 121

Fig. 2. Framework of CMODE.

population toward the feasible region since the individuals
with a large degree of constraint violations might have small
values with respect to this term. Note that the survival of such
solutions will influence the speed at which the population
enters the feasible region. Hence, we introduce the second
term on the right-hand side of (11) to motivate the population
approaching or entering the feasible region quickly. By
combining the first and second terms, the purpose of the
deterministic replacement can be achieved.

With respect to the random replacement, all of the indi-
viduals in archive A are used to eliminate the same number
of individuals selected from population P(t) at random. Note,
however, that the replacement is not applied to the best individ-
ual in P(t). It is necessary to emphasize that if the population
contains only infeasible solutions, the best individual denotes
the infeasible solution with the lowest degree of constraint
violation, or else the best individual denotes the feasible
solution with the smallest objective function value in the
population. The main reason why the best individual is not
replaced is explained as follows.

For some particular COPs in which the optimal solutions are
located on the boundaries of the feasible region, the following
scenario might arise:

a) the region surrounding the optimal solution consists of
a very large infeasible region yet a very small feasible
region;

b) the population either converges or is very close to the
global optimum in the later evolutionary stage.

Under the above conditions, if the evolution of the pop-
ulation does not finish, the offspring population created by
the DE operations might always only involve infeasible solu-
tions. Note that if the current offspring population is entirely
composed of infeasible solutions, the infeasible solution with
the lowest degree of constraint violation will be archived.
Subsequently, some individuals of population P(t) will be
randomly replaced by the infeasible individuals in archive A.
Thus, the worst case is that the feasibility proportion of P(t)

might gradually decrease to zero due to the random replace-
ment. The above issue can be addressed by preventing the
best individual from being replaced since once the population
contains one or more feasible solutions, the best feasible
solution will not be replaced by the infeasible solutions in
archive A.

Based on our experiments which are explained in Section V-
A, the performance of our algorithm will be more competitive
if the deterministic replacement has a slightly higher chance
of being implemented than the random replacement. The
infeasible solution replacement mechanism is executed as
follows:

if rand < 0.75
execute the deterministic replacement;

else
execute the random replacement;

end
where rand is a uniformly generated random number between
0 and 1.

122 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 1, FEBRUARY 2012

TABLE I

Details of 24 Benchmark Test Functions

Prob. n Type of objective function ρ LI NI LE NE a f (�x∗)
g01 13 Quadratic 0.0111% 9 0 0 0 6 −15.0000000000
g02 20 Nonlinear 99.9971% 0 2 0 0 1 −0.8036191041
g03 10 Polynomial 0.0000% 0 0 0 1 1 −1.0005001000
g04 5 Quadratic 51.1230% 0 6 0 0 2 −30665.5386717833
g05 4 Cubic 0.0000% 2 0 0 3 3 5126.4967140071
g06 2 Cubic 0.0066% 0 2 0 0 2 −6961.8138755802
g07 10 Quadratic 0.0003% 3 5 0 0 6 24.3062090682
g08 2 Nonlinear 0.8560% 0 2 0 0 0 −0.0958250414
g09 7 Polynomial 0.5121% 0 4 0 0 2 680.6300573744
g10 8 Linear 0.0010% 3 3 0 0 0 7049.2480205287
g11 2 Quadratic 0.0000% 0 0 0 1 1 0.7499000000
g12 3 Quadratic 4.7713% 0 1 0 0 0 −1.0000000000
g13 5 Nonlinear 0.0000% 0 0 0 3 3 0.0539415140
g14 10 Nonlinear 0.0000% 0 0 3 0 3 −47.7648884595
g15 3 Quadratic 0.0000% 0 0 1 1 2 961.7150222900
g16 5 Nonlinear 0.0204% 4 34 0 0 4 −1.9051552585
g17 6 Nonlinear 0.0000% 0 0 0 4 4 8853.5338748065
g18 9 Quadratic 0.0000% 0 13 0 0 0 −0.8660254038
g19 15 Nonlinear 33.4761% 0 5 0 0 0 32.6555929502
g20 24 Linear 0.0000% 0 6 2 12 16 0.2049794002
g21 7 Linear 0.0000% 0 1 0 5 6 193.7245100697
g22 22 Linear 0.0000% 0 1 8 11 19 236.4309755040
g23 9 Linear 0.0000% 0 2 3 1 6 −400.0551000000
g24 2 Linear 79.6556% 0 2 0 0 2 −5.5080132716

C. Computational Time Complexity

The basic operations of CMODE and their worst-case
complexities at one generation are as follows.

1) The identification of the nondominated individuals in set
C requires 2λλ̄ comparisons of individuals [40], where
λ̄ is the number of the nondominated individuals in set
C.

2) Using the nondominated individuals in set C to replace
the dominated individuals in set Q needs 2λλ̄ compar-
isons.

3) The infeasible solution replacement mechanism includes
two parts. In the deterministic replacement, computing
the rank value R1(�xi) and the rank value R2(�xi) requires
2Np(Np − 1) comparisons and Nplog(Np) comparisons
in population P(t), respectively. In addition, sorting the
individuals in population P(t) according to (11) requires
Nplog(Np) comparisons. Since the replacement is im-
plemented every k iterations, the worst complexity of
computing the rank value R1(�xi) and the rank value
R2(�xi) and sorting the individuals according to (11)
at one generation is 2Np(Np−1)/k, Nplog(Np)/k, and
Nplog(Np)/k, respectively. The computational time com-
plexity can be neglected in the random replacement.

So, the overall computational time complexity of CMODE
is 4λλ̄ + 2Np(Np − 1 + log(Np))/k.

D. Similarities and Differences Between CW and CMODE

We would like to make the following remarks on the
similarities and differences between CMODE and CW.

1) Both CW and CMODE involve two main components:
the population evolution model and the infeasible solu-
tion archiving and replacement mechanism.

2) CW includes a problem-dependent parameter, i.e., the
expanding factor in the simplex crossover, which should
be tuned according to the number of the decision vari-
ables of the problems at hand, in order to produce
robust performance. However, in CMODE the parameter
settings are kept the same for different problems by
taking advantage of DE as the search engine.

3) In CW, only one nondominated individual in set C is
used to replace one dominated individual (if it exists)
in set Q. However, CMODE allows all of the nondom-
inated individuals in set C to replace the corresponding
dominated individuals (if they exist) in set Q. Moreover,
the replacement procedure of CMODE is simpler than
that of CW.

4) The infeasible solution replacement mechanism in CW
is similar to the random replacement in CMODE. The
only difference is that the best individual in the popu-
lation is never replaced in the random replacement of
CMODE. In CMODE, the deterministic replacement is
introduced and combined with the random replacement,
which makes the algorithm more effective when solving
complex COPs.

5) Instead of only randomly choosing several infeasi-
ble individuals from archive A to replace the same
number of individuals in population P(t) as in CW,
all of the infeasible individuals in archive A replace
the same number of individuals in population P(t) in

WANG AND CAI: COMBINING MULTIOBJECTIVE OPTIMIZATION WITH DIFFERENTIAL EVOLUTION TO SOLVE OPTIMIZATION PROBLEMS 123

CMODE, which eliminates an additional parameter for
CMODE.

IV. Experimental Study

A. Experimental Settings

The 24 benchmark test functions collected in [18] were
employed to demonstrate the capability of CMODE. The
details of these test cases are reported in Table I, where n is
the number of decision variables, ρ = |�|/|S| is the estimated
ratio between the feasible region and the search space, LI is
the number of linear inequality constraints, NI is the number
of nonlinear inequality constraints, LE is the number of linear
equality constraints, NE is the number of nonlinear equality
constraints, a is the number of constraints active at the optimal
solution, and f (�x∗) is the objective function value of the best
known solution. It is necessary to emphasize that we only
show 4 digits after the decimal point in the fourth column
of Table I, so ρ is equal to 0.0000% for some test functions.
However, it does not mean that there are no feasible solutions
in the search space.

Since an improved best known solution has been found
in this paper for test function g17, the f (�x∗) in Table I
is different from that in [18] for this test function. The
best known solution reported in [18] for test function
g17 is �x∗ = (201.784467214524, 100, 383.071034852773,
420, −10.907658451429, 0.073148231208) with f (�x∗) =
8853.53967480648. The improved solution found in this
paper for test function g17 is �x∗ = (201.784462493550,
100, 383.071034852773, 420, −10.907665625756,
0.073148231208) with f (�x∗) = 8853.533874806484. The
above result for test function g17 has also been reported in
[29].

CMODE includes the following five parameters: the
population size (Np), the scaling factor (F) and the crossover
control parameter (Cr) of DE, the size of set Q (λ), and the
interval of generations for infeasible solution archiving and
replacement (k). Usually, F is chosen from the interval [0,
1], and the best reported values are typically between 0.5 and
0.9 [41], [42]. Cr is also chosen between 0 and 1; however,
high values, such as 0.9 and 1.0, lead to good results for
most applications. It is necessary to note that this paper
adopts a steady-state EA,1 thus the size of P(t) (i.e., Np) is
recommended to be much larger than that of set Q (i.e., λ).
In addition, we intend to let each individual in population
P(t) carry out the DE operations about once before being
replaced. So, Np should be approximately equal to λk. In
this paper, the actual parameter values are set as follows:
Np = 180, F is randomly chosen between 0.5 and 0.6, Cr is
randomly chosen between 0.9 and 0.95, λ = 8, and k = 22.

B. General Performance of the Proposed Algorithm

As suggested by Liang et al. [18], 25 independent runs were
performed for each test case using 5×105 FES at maximum,

1Unlike the generational EA (i.e., standard EA), in which all the individuals
in the population are used to generate the offspring population, in the steady-
state EA only several individuals in the population are chosen to produce the
offspring population, in order to make the evolution of the population more
steady.

and the tolerance value δ for the equality constraints was set
to 0.0001. Note that we present our experimental results in
the way also suggested by Liang et al. [18]. The best, median,
worst, mean, and standard deviation of the error value (f (�x)−
f (�x∗)) for the best-so-far solution �x after 5×103, 5×104, and
5 × 105 FES in each run are recorded in Tables II–V. In these
tables, c is the number of violated constraints at the median
solution: the sequence of three numbers indicates the number
of violations (including inequality and equality constraints)
by more than 1.0, between 0.01 and 1.0, and between 0.0001
and 0.01, respectively. v̄ is the mean value of the violations
of all the constraints at the median solution. The numbers in
the parentheses after the error values of the best, median, and
worst solutions are the number of unsatisfied constraints at the
best, median, and worst solutions, respectively.

As shown in Tables II–V, for 12 out of 24 test functions
(i.e., g01, g02, g04, g06, g07, g08, g09, g11, g12, g16, g19,
and g24) feasible solutions can be found in every run by
using 5 × 103 FES. In 5 × 104 FES, feasible solutions can be
consistently found for all the test functions with the exception
of test functions g20, g22, and g23. For test function g23,
CMODE enters the feasible region within 5 × 105 FES. It is
worth noting that with regard to test function g20, the best
known solution is a little infeasible, and no feasible solution
has been found so far. Despite the fact that several constraints
are violated in the best, median, and worst solutions for this
test function by using 5 × 105 FES, only the first constraint is
violated for slightly more than 0.01 based on our observation
of CMODE. In terms of test function g22, the results derived
from CMODE are still far away from the feasible region,
which means this test function is very difficult for CMODE
to solve. It can also be seen from Tables II–V that CMODE
is able to find a good feasible approximation of the “known”
optimal solutions for 9 test functions (i.e., test functions g05,
g06, g08, g11, g12, g13, g15, g16, and g24) in 5 × 104 FES.
The results achieved by CMODE are very close to or even
equal to the “known” optimal solutions for 22 test functions
in all runs by using 5 × 105 FES, except for test functions
g21 and g22. The results for test function g21 can reach the
“known” optimal solution for a majority of runs.

Table VI records the number of FES needed in each run
for satisfying the success condition as suggested by Liang
et al. [18]: f (�x) − f (�x∗) ≤ 0.0001 and �x is feasible. For test
function g20, when the population of CMODE is very close
to the feasible region in the later stage, the objective function
values of the individuals in the population are smaller than
that of the best known solution, thus the success condition is
changed to |f (�x)−f (�x∗)| ≤ 0.0001. Table VI also records the
feasible rate, the success rate, and the success performance for
24 test functions. The feasible rate denotes the percentage of
runs where at least one feasible solution is found in 5×105

FES. The success rate denotes the percentage of runs where the
algorithm finds a solution that satisfies the success condition.
The success performance denotes the mean number of FES
for successful runs multiplied by the number of total runs and
divided by the number of successful runs.

As shown in Table VI, the feasible rate of 100% has been
accomplished for all of the test cases except for test functions

124 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 1, FEBRUARY 2012

TABLE II

Function Error Values Achieved When FES = 5 × 103, FES = 5 × 104
, and FES = 5 × 105

for Test Functions g01-g06

Prob. g01 g02 g03 g04 g05 g06
FES

Best 6.2987E+00 (0) 4.1673E-01 (0) 8.6595E-01 (0) 8.3040E+01 (0) 3.5276E+02 (3) 9.3309E+00 (0)
Median 8.4124E+00 (0) 4.9163E-01 (0) 8.5741E-01 (1) 1.4440E+02 (0) 2.1365E+01 (3) 4.2506E+01 (0)
Worst 1.0242E+01 (0) 5.2903E-01 (0) 7.6268E-01 (1) 2.3471E+02 (0) 1.3974E+02 (4) 1.4798E+02 (0)

5 × 103 c 0, 0, 0 0, 0, 0 0, 0, 1 0, 0, 0 2, 1, 0 0, 0, 0
v̄ 0 0 1.2800E-04 0 8.6147E-01 0

Mean 8.5197E+00 4.8832E-01 9.1635E-01 1.4686E+02 9.4818E+01 4.3961E+01
Std 9.3137E-01 3.1699E-02 1.4038E-01 3.8310E+01 1.4295E+02 2.8949E+01
Best 3.3935E-02 (0) 1.6609E-01 (0) 1.4327E-03 (0) 1.4489E-03 (0) 1.7750E-08 (0) 2.1464E-08 (0)

Median 7.0387E-02 (0) 2.0310E-01 (0) 7.1021E-03 (0) 1.3733E-02 (0) 1.4309E-07 (0) 2.4520E-07 (0)
Worst 1.6472E-01 (0) 2.6952E-01 (0) 1.9600E-02 (0) 4.4097E-02 (0) 5.2276E-07 (0) 1.4298E-06 (0)

5 × 104 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v̄ 0 0 0 0 0 0

Mean 7.8005E-02 2.0225E-01 7.2294E-03 1.7592E-02 1.6482E-07 4.4921E-07
Std 3.2951E-02 2.7097E-02 4.2851E-03 1.1460E-02 1.1939E-07 4.2333E-07
Best 0.0000E+00 (0) 4.1726E-09 (0) 2.3964E-10 (0) 7.6398E-11 (0) −1.8190E-12 (0) 3.3651E-11 (0)

Median 0.0000E+00 (0) 1.1372E-08 (0) 1.1073E-09 (0) 7.6398E-11 (0) −1.8190E-12 (0) 3.3651E-11 (0)
Worst 0.0000E+00 (0) 1.1836E-07 (0) 2.5794E-09 (0) 7.6398E-11 (0) −1.8190E-12 (0) 3.3651E-11 (0)

5 × 105 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v̄ 0 0 0 0 0 0

Mean 0.0000E+00 2.0387E-08 1.1665E-09 7.6398E-11 −1.8190E-12 3.3651E-11
Std 0.0000E+00 2.4195E-08 5.2903E-10 2.6382E-26 1.2366E-27 1.3191E-26

TABLE III

Function Error Values Achieved When FES = 5 × 103, FES = 5 × 104
, and FES = 5 × 105

for Test Functions g07-g12

Prob. g07 g08 g09 g10 g11 g12
FES

Best 2.4705E+01 (0) 7.3110E-07 (0) 1.7204E+01 (0) 3.6769E+03 (0) 4.2572E-05 (0) 3.4327E-05 (0)
Median 5.3070E+01 (0) 2.3934E-04 (0) 4.9003E+01 (0) 7.5273E+03 (0) 5.7988E-04 (0) 1.3876E-04 (0)
Worst 9.3853E+01 (0) 1.1690E-03 (0) 7.5658E+01 (0) 7.1095E+03 (1) 1.6314E-02 (0) 4.1130E-04 (0)

5 × 103 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v̄ 0 0 0 0 0 0

Mean 5.8455E+01 3.1711E-04 4.8373E+01 7.2982E+03 2.3246E-03 1.4508E-04
Std 1.8767E+01 3.2230E-04 1.5605E+01 2.1056E+03 4.3639E-03 9.0524E-05
Best 1.3917E-01 (0) 8.1968E-11 (0) 7.7915E-04 (0) 1.7843E+01 (0) 1.1792E-10 (0) 0.0000E+00 (0)

Median 2.4984E-01 (0) 1.1650E-08 (0) 1.7339E-03 (0) 2.9539E+01 (0) 1.6769E-09 (0) 0.0000E+00 (0)
Worst 3.4206E-01 (0) 2.8863E-07 (0) 7.3459E-03 (0) 5.1087E+01 (0) 9.0309E-09 (0) 0.0000E+00 (0)

5 × 104 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v̄ 0 0 0 0 0 0

Mean 2.3893E-01 3.4410E-08 2.4239E-03 3.0954E+01 1.7298E-09 0.0000E+00
Std 5.3937E-02 6.3509E-08 1.5793E-03 7.1813E+00 1.7427E-09 0.0000E+00
Best 7.9783E-11 (0) 8.1964E-11 (0) −9.8225E-11 (0) 6.2755E-11 (0) 0.0000E+00 (0) 0.0000E+00 (0)

Median 7.9793E-11 (0) 8.1964E-11 (0) −9.8225E-11 (0) 6.2755E-11 (0) 0.0000E+00 (0) 0.0000E+00 (0)
Worst 7.9811E-11 (0) 8.1964E-11 (0) −9.8111E-11 (0) 6.3664E-11 (0) 0.0000E+00 (0) 0.0000E+00 (0)

5 × 105 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v̄ 0 0 0 0 0 0

Mean 7.9793E-11 8.1964E-11 −9.8198E-11 6.2827E-11 0.0000E+00 0.0000E+00
Std 7.6527E-15 6.3596E-18 4.9554E-14 2.5182E-13 0.0000E+00 0.0000E+00

WANG AND CAI: COMBINING MULTIOBJECTIVE OPTIMIZATION WITH DIFFERENTIAL EVOLUTION TO SOLVE OPTIMIZATION PROBLEMS 125

TABLE IV

Function Error Values Achieved When FES = 5 × 103, FES = 5 × 104
, and FES = 5 × 105

for Test Functions g13-g18

Prob. g13 g14 g15 g16 g17 g18
FES

Best 9.4524E-01 (3) −3.4672E+01 (3) 1.6702E-01 (2) 3.3010E-02 (0) 1.1711E+01 (4) 9.4076E-01 (2)
Median 2.8416E-01 (3) −7.1386E+01 (3) 1.8488E-01 (2) 8.9566E-02 (0) 1.9234E+02 (4) 1.0787E+00 (5)
Worst 9.6130E-02 (3) −1.0251E+02 (3) −9.2489E-01 (2) 1.6484E-01 (0) −1.1476E+02 (4) 7.1992E-02 (10)

5 × 103 c 0, 3, 0 3, 0, 0 0, 1, 1 0, 0, 0 2, 2, 0 1, 4, 0
v̄ 1.9430E-01 2.2977E+00 2.0680E-02 0 1.8689E+00 2.5338E-01

Mean 1.2345E+00 −7.2797E+01 4.6228E-01 9.8091E-02 7.6342E+01 7.0585E-01
Std 2.6306E+00 2.3303E+01 1.0900E+00 3.4533E-02 1.4688E+02 3.2805E-01
Best 8.3118E-09 (0) 4.6637E-02 (0) 1.6336E-10 (0) 2.9208E-07 (0) 4.7053E-03 (0) 3.9508E-03 (0)

Median 3.8234E-08 (0) 1.6697E-01 (0) 3.4606E-10 (0) 8.9034E-07 (0) 3.8689E-01 (0) 8.3102E-03 (0)
Worst 1.8106E-07 (0) 3.1410E-01 (0) 1.2237E-09 (0) 2.4040E-06 (0) 3.6328E+00 (0) 1.3964E-02 (0)

5 × 104 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v̄ 0 0 0 0 0 0

Mean 6.0691E-08 1.5457E-01 4.5651E-10 9.2580E-07 9.5947E-01 7.9920E-03
Std 5.5890E-08 6.9440E-02 3.0279E-10 4.4351E-07 1.2452E+00 2.5298E-03
Best 4.1897E-11 (0) 8.5123E-12 (0) 6.0822E-11 (0) 6.5213E-11 (0) 1.8189E-12 (0) 1.5561E-11 (0)

Median 4.1897E-11 (0) 8.5194E-12 (0) 6.0822E-11 (0) 6.5213E-11 (0) 1.8189E-12 (0) 1.5561E-11 (0)
Worst 4.1897E-11 (0) 8.5194E-12 (0) 6.0822E-11 (0) 6.5213E-11 (0) 1.8189E-12 (0) 1.5561E-11 (0)

5 × 105 c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v̄ 0 0 0 0 0 0

Mean 4.1897E-11 8.5159E-12 6.0822E-11 6.5213E-11 1.8189E-12 1.5561E-11
Std 1.0385E-17 3.6230E-15 0.0000E+00 2.6382E-26 1.2366E-27 6.5053E-17

TABLE V

Function Error Values Achieved When FES = 5 × 103, FES = 5 × 104
, and FES = 5 × 105

for Test Functions g19-g24

Prob. g19 g20 g21 g22 g23 g24
FES

Best 1.1203E+02 (0) 3.1573E+00 (20) 1.2672E+02 (5) 2.0789E+03 (19) 1.9244E+02 (5) 6.8253E-04 (0)
Median 2.6721E+02 (0) 4.4912E+00 (20) 3.2566E+02 (5) 1.4253E+03 (19) −9.7940E+02 (5) 9.1187E-03 (0)
Worst 4.5526E+02 (0) 4.7287E+00 (20) 1.3427E+02 (5) 7.2212E+03 (19) −6.6565E+02 (5) 2.0908E-02 (0)

5 × 103 c 0, 0, 0 2, 17, 1 1, 4, 0 20, 0, 0 2, 3, 0 0, 0, 0
v̄ 0 2.7709E+00 4.7008E-01 3.4231E+06 5.8659E-01 0

Mean 2.7639E+02 5.1024E+00 1.7669E+02 2.1077E+03 −4.0060E+02 9.4422E-03
Std 7.4543E+01 9.4581E-01 1.8408E+02 2.2120E+03 4.9291E+02 5.9393E-03
Best 3.4097E+00 (0) −5.1880E-02 (20) 2.5883E-02 (0) −2.3148E+02 (20) 3.7442E+01 (0) 1.4111E-09 (0)

Median 4.5266E+00 (0) −4.4471E-02 (20) 1.0766E-01 (0) −2.3581E+02 (20) 1.1020E+02 (0) 2.0215E-08 (0)
Worst 5.9388E+00 (0) −8.6126E-02 (20) 1.3195E+02 (0) −2.3516E+02 (20) 1.5480E+02 (3) 5.0833E-07 (0)

5 × 104 c 0, 0, 0 0, 8, 12 0, 0, 0 20, 0, 0 0, 0, 0 0, 0, 0
v̄ 0 2.6343E-02 0 2.9974E+04 0 0

Mean 4.5782E+00 −6.5402E-02 3.5214E+01 −2.3462E+02 1.1587E+02 6.9295E-08
Std 6.8379E-01 1.0365E-02 5.7623E+01 1.9303E+00 6.8442E+01 1.1091E-07
Best 1.1027E-10 (0) −1.1525E-05 (6) −3.1237E-10 (0) −2.3643E+02 (20) 1.8758E-12 (0) 4.6735E-12 (0)

Median 2.1582E-10 (0) −1.6567E-05 (8) −2.9436E-10 (0) −2.3643E+02 (20) 1.5859E-11 (0) 4.6735E-12 (0)
Worst 5.4446E-10 (0) −1.9427E-05 (9) 1.3097E+02 (0) −2.3643E+02 (20) 2.8063E-10 (0) 4.6735E-12 (0)

5 × 105 c 0, 0, 0 0, 1, 7 0, 0, 0 8, 10, 0 0, 0, 0 0, 0, 0
v̄ 0 7.1975E-03 0 5.6257E+01 0 0

Mean 2.4644E-10 −2.1729E-05 2.6195E+01 −2.3643E+02 4.4772E-11 4.6735E-12
Std 1.0723E-10 9.2521E-06 5.3471E+01 8.7023E-14 7.3264E-11 8.2445E-28

126 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 1, FEBRUARY 2012

TABLE VI

Number of FES to Achieve the Success Condition, Success Rate, Feasible Rate, and Success Performance

Prob. Best Median Worst Mean Std Feasible Rate Success Rate Success Performance
g01 101 908 122 324 136 228 121 077 8355.8 100% 100% 121 077
g02 170 372 189 204 222 468 189 820 1269.2 100% 100% 189 820
g03 63 364 75 860 86 772 75 085 6271.1 100% 100% 75 085
g04 63 540 73 572 79 556 72 748 3869.7 100% 100% 72 748
g05 26 580 28 692 31 508 28 873 1256.7 100% 100% 28 873
g06 26 932 35 908 41 716 35 464 3200.5 100% 100% 35 464
g07 142 388 156 644 166 148 155 968 4865.1 100% 100% 155 968
g08 2820 5988 8276 5885 1383.7 100% 100% 5885
g09 63 540 70 404 83 780 71 122 6044.7 100% 100% 71 122
g10 171 252 183 924 192 900 183 255 5757.7 100% 100% 183 255
g11 3532 6164 8100 6023 1061.3 100% 100% 6023
g12 1764 5460 8100 5009 1735.1 100% 100% 5009
g13 19 484 30 980 42 316 30 689 4247.1 100% 100% 30 689
g14 97 684 106 660 118 452 107 976 5515.3 100% 100% 107 976
g15 10732 12 868 14 788 12 855 851.2 100% 100% 12 855
g16 27 460 29 396 32 388 29 332 1114.1 100% 100% 29 332
g17 75 460 134 644 294 452 139 746 5949.8 100% 100% 139 746
g18 93 812 104 196 116 340 105 020 7236.0 100% 100% 105 020
g19 241 476 251 684 269 284 251 676 7047.5 100% 100% 251 676
g20 20 076 457 692 487 524 440 121 9064.1 0% 100% 440 121
g21 85 012 95 332 224 756 103 006 27844.2 100% 80% 128 758
g22 – – – – – 0% 0% –
g23 208 036 240 772 326 484 244 612 26323.2 100% 100% 244 612
g24 13 908 23 060 31 684 21 820 5171.2 100% 100% 21 820

g20 and g22. For these two test functions, no feasible solutions
have been found. Regarding the success rate, CMODE is
capable of achieving a value of 100% for all of the test
functions with the exception of test functions g21 and g22.
There is no successful run for test function g22; however, the
successful runs arise in a majority of trials for test function
g21. By making use of the indicator “success performance,”
one can conclude that CMODE requires less than 5 × 104

FES for 9 test functions, less than 2.6 × 105 FES for 22 test
functions, and less than 5 × 105 FES for 23 test functions, to
achieve the target error accuracy level.

The convergence graphs of log(f (�x) − f (�x∗)) over FES at
the median run are plotted in Figs. 3–8. Since test function
g22 cannot be solved, its convergence graph is not included
in Figs. 3–8. The value of (f (�x) − f (�x∗)) in the later stage is
negative for test function g20; consequently, there is no conver-
gence graph of this test case in Figs. 3–8. It is important to note
that in Figs. 3–8, the points which satisfy f (�x)−f (�x∗) ≤ 0 are
not plotted. Figs. 3–8 clearly indicate that CMODE requires
less than 2×105 FES for most of test functions to accomplish
the target error accuracy level, which further verifies the results
shown in Table VI.

C. Comparison with CW

The main motivation of this paper is to overcome the short-
comings of CW, that is, the problem-dependent parameters,
such as the expanding factor in the simplex crossover. In
order to validate the motivation for developing CMODE, we
compared the performance of CMODE with that of CW on
24 benchmark test functions.

In [1], the authors have recommended the ranges for the
population size and the expanding factor in the simplex

Fig. 3. Convergence graph for g01-g04.

crossover for different test functions based on the number of
decision variables. According to the recommendation in [1],
we used the following population size for CW when solving
the 24 benchmark test functions:

Np =

⎧⎪⎪⎨
⎪⎪⎩

50, 0 < n < 5
100, 5 ≤ n < 15
150, 15 ≤ n < 20
200, 20 ≤ n < 25.

(12)

In addition, according to the suggestion in [1], the expanding
factor of the simplex crossover in this paper ranged from 3 to 6
if 2 ≤ n < 10, ranged from 8 to 11 if 10 ≤ n < 20, and ranged
from 13 to 16 if 20 ≤ n < 25. Moreover, we randomly chose
an integer from the range specified for the expanding factor at
each generation in order to ease the setting of this parameter
and make the comparison fair. The remaining parameters of
CW were kept the same as in [1].

WANG AND CAI: COMBINING MULTIOBJECTIVE OPTIMIZATION WITH DIFFERENTIAL EVOLUTION TO SOLVE OPTIMIZATION PROBLEMS 127

Fig. 4. Convergence graph for g05-g08.

Fig. 5. Convergence graph for g09-g12.

Fig. 6. Convergence graph for g13-g16.

For CMODE and CW, 25 dependent runs were executed
on each test function and the maximum number of FES was
5 × 105. In this subsection, only the results of those test
functions for which the performance difference between CW
and CMODE is obvious are reported due to space limitations.
Table VII summarizes the experimental results for test func-
tions g02, g09, g10, g13, g17, g18, g20, g21, and g23, in terms
of three indicators: mean objective function value, success rate,
and feasible rate.

As shown in Table VII, CW suffers from frequent premature
convergence for test functions g02, g09, g10, g13, and g17,
although CW can consistently enter the feasible region for
them. For these five test functions, the success rates provided
by CW are clearly less than those of CMODE. Moreover, CW

Fig. 7. Convergence graph for g17-g19.

Fig. 8. Convergence graph for g21, g23, and g24.

fails to solve test functions g02, g10, and g17 in any run. In
addition, CW cannot achieve the target error accuracy level
for test function g20. For test functions g18, g21, and g23,
CW is incapable of consistently finding the feasible solutions.
More importantly, CW cannot find the feasible solutions even
in one run for test functions g21 and g23. Compared to CW,
CMODE achieves remarkably better performance in terms of
the three indicators.

The above comparison verifies the superiority of CMODE
and indicates that the performance of CW is sensitive to the
expanding factor in the simplex crossover.

D. Comparison with Some Other DE-Based Approaches in
Constrained Evolutionary Optimization

We compared CMODE against six DE-based approaches:
εDE [26], a variant of SaDE [27], MPDE [28], GDE [29],
jDE-2 [30], and MDE [31], using three performance metrics:
feasible rate, success rate, and success performance. It is
necessary to note that DE also serves as the search engine
in these six approaches. The experimental results of these
six approaches are directly taken from the references and are
compared with those of CMODE in Tables VIII and IX.

In terms of the mean feasible rate, the performance of
CMODE is worse than three methods, i.e., εDE, SaDE, and
jDE-2, similar to one method, i.e., MDE, and superior to two
methods, i.e., MPDE and GDE. εDE and SaDE achieve the
best mean feasible rate among the seven methods. However,
both εDE and SaDE require gradient information.

With respect to the mean success rate, CMODE performs
significantly better than the other six methods. It is noteworthy

128 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 1, FEBRUARY 2012

TABLE VII

Comparison of CMODE with Respect to CW on Test Functions g02, g09, g10, g13, g17, g18, g20, g21, and g23

Prob. Mean Objective Function Value (Success Rate) [Feasible Rate] Prob. Mean Objective Function Value (Success Rate) [Feasible Rate]
CMODE CW CMODE CW

g02 −0.8036 (100%) [100%] −0.7655 (0%) [100%] g18 −0.8660 (100%) [100%] −0.5557 (0%) [68%]
g09 680.6301 (100%) [100%] 680.6374 (24%) [100%] g20 0.2050 (100%) [0%] 0.1848 (0%) [0%]
g10 7049.2480 (100%) [100%] 9532.9256 (0%) [100%] g21 219.9201 (80%) [100%] 419.0050 (0%) [0%]
g13 0.0539 (100%) [100%] 0.0709 (76%) [100%] g23 −400.0551 (100%) [100%] −342.3291 (0%) [0%]
g17 8853.5339 (100%) [100%] 8934.4539 (0%) [100%]

The better result for each test function between the two compared algorithms is highlighted in boldface.

TABLE VIII

Comparison of CMODE with Respect to εDE [26], SaDE [27], MPDE [28], GDE [29], jDE-2 [30], and MDE [31] in Terms of Feasible Rate

and Success Rate

Prob.
Feasible Rate Success Rate

εDE SaDE MPDE GDE jDE-2 MDE CMODE εDE SaDE MPDE GDE jDE-2 MDE CMODE
g02 100% 100% 100% 100% 100% 100% 100% 100% 84% 92% 72% 92% 16% 100%
g03 100% 100% 100% 96% 100% 100% 100% 100% 96% 84% 4% 0% 100% 100%
g05 100% 100% 100% 96% 100% 100% 100% 100% 100% 100% 92% 68% 100% 100%
g11 100% 100% 100% 100% 100% 100% 100% 100% 100% 96% 100% 96% 100% 100%
g13 100% 100% 88% 88% 100% 100% 100% 100% 100% 48% 40% 0% 100% 100%
g14 100% 100% 100% 100% 100% 100% 100% 100% 80% 100% 96% 100% 100% 100%
g15 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 96% 96% 100% 100%
g17 100% 100% 96% 76% 100% 100% 100% 100% 4% 28% 16% 4% 100% 100%
g18 100% 100% 100% 84% 100% 100% 100% 100% 92% 100% 76% 100% 100% 100%
g19 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 88% 100% 0% 100%
g20 0% 0% 0% 0% 4% 0% 0% 0% 0% 0% 0% 0% 0% 100%
g21 100% 100% 100% 88% 100% 100% 100% 100% 60% 68% 60% 92% 100% 80%
g22 100% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
g23 100% 100% 100% 88% 100% 100% 100% 100% 88% 100% 40% 92% 100% 100%
Mean 95.83% 95.83% 91% 88.17% 91.83% 91.67% 91.67% 91.67% 83.5% 84% 74.17% 76.67% 84% 95%

The best result for each test function among the compared algorithms is highlighted in boldface.

that for test function g20, the other six methods fail in reaching
the target error accuracy level. However, CMODE can achieve
a 100% success rate for this test function. Furthermore, we
have provided an improved solution for test function g17.
Based on this improved solution, the other six methods, except
for GDE, cannot solve this test function even in one run
according to the target error accuracy level.2 Moreover, GDE
reaches this improved solution only a few times out of 25
trials.

When performance is reliable, then success performance
reflects the convergence speed of an algorithm. Since SaDE
employs the sequential quadratic programming method as
the local search operator, we cannot exactly calculate how
many number of FES is spent by the local search. As a
result, the results of SaDE are not included in Table IX.
In Table IX, “NA” denotes that the success performance is
not available since the corresponding success rate provided is
0%. In constrained optimization, the computation time of an
algorithm mainly depends on the evaluation of the objective
function and the degree of constraint violation, hence, the sum

2Recall that we directly take the results of εDE, SaDE, MPDE, GDE, jDE-
2, and MDE from the original papers to make the comparison fair, therefore,
the success rates of εDE, SaDE, MPDE, jDE-2, and MDE in Table VIII
are greater than 0% for test function g17. However, based on the improved
solution provided in this paper, the success rates of εDE, SaDE, MPDE, jDE-
2, and MDE should be 0%.

of success performance reflects the overall convergence speed
of the algorithm to a certain degree. It can be observed from
Table IX that CMODE certainly converges faster than MPDE,
GDE, and jDE-2 in terms of the sum of success performance.
In addition, the overall convergence performance among εDE,
MDE, and CMODE are incomparable since we cannot exactly
measure the number of FES for “NA.” On the other hand,
we rank the performance of each algorithm [1 (best) to 6
(worst)] on each test function, and sum the rank numbers for
each algorithm over all the test functions, to assess the overall
convergence speed of each algorithm. From Table IX, we can
see that MDE exhibits the fastest overall convergence speed
and the overall convergence performance of CMODE is not
very good compared with the other competitors, in terms of
the sum of rank.

In summary, the overall performance of CMODE is
highly competitive with the six methods compared. Although
CMODE does not perform very well in terms of the feasible
rate, it is significantly superior to the other six approaches with
respect to the success rate.

V. Discussion

This section aims at discussing the effectiveness of some
mechanisms proposed in this paper and the effect of parameter
settings on the performance of CMODE. It is important to

WANG AND CAI: COMBINING MULTIOBJECTIVE OPTIMIZATION WITH DIFFERENTIAL EVOLUTION TO SOLVE OPTIMIZATION PROBLEMS 129

TABLE IX

Comparison of CMODE with Respect to εDE [26], SaDE [27], MPDE [28], GDE [29], jDE-2 [30], and MDE [31] in Terms of Success

Performance

Prob. Success Performance Prob. Success Performance
εDE MPDE GDE jDE-2 MDE CMODE εDE MPDE GDE jDE-2 MDE CMODE

g01 5.9E+04 4.3E+04 4.1E+04 5.0E+04 7.5E+04 1.2E+05 g13 3.5E+04 7.4E+05 8.7E+05 NA 2.2E+04 3.1E+04
g02 1.5E+05 3.0E+05 1.5E+05 1.5E+05 6.0E+04 1.9E+05 g14 1.1E+05 4.3E+04 2.3E+05 9.8E+04 2.9E+05 1.1E+05
g03 8.9E+04 2.5E+04 3.5E+06 NA 4.5E+04 7.5E+04 g15 8.4E+04 2.0E+05 7.5E+04 2.4E+05 1.0E+04 1.3E+04
g04 2.6E+04 2.1E+04 1.5E+04 4.1E+04 4.2E+04 7.3E+04 g16 1.3E+04 1.3E+04 1.3E+04 3.2E+04 8.7E+03 2.9E+04
g05 9.7E+04 2.2E+05 1.9E+05 4.5E+05 2.1E+04 2.9E+04 g17 9.9E+04 7.3E+05 2.1E+06 1.1E+07 2.6E+04 1.4E+05
g06 7.4E+03 1.1E+04 6.5E+03 2.9E+04 5.2E+03 3.5E+04 g18 5.9E+04 4.4E+04 4.8E+05 1.0E+05 1.0E+05 1.1E+05
g07 7.4E+04 5.7E+04 1.2E+05 1.3E+05 1.9E+05 1.6E+05 g19 3.5E+05 1.2E+05 2.3E+05 2.0E+05 NA 2.5E+05
g08 1.1E+03 1.5E+03 1.5E+03 3.2E+03 9.2E+02 5.9E+03 g20 NA NA NA NA NA 4.4E+05
g09 2.3E+04 2.1E+04 3.0E+04 5.5E+04 1.6E+04 7.1E+04 g21 1.4E+05 2.1E+05 5.8E+05 1.3E+05 1.1E+05 1.3E+05
g10 1.1E+05 4.8E+04 8.3E+04 1.5E+05 1.6E+05 1.8E+05 g22 NA NA NA NA NA NA
g11 1.6E+04 2.3E+04 8.5E+03 5.4E+04 3.0E+03 6.0E+03 g23 2.0E+05 2.1E+05 1.1E+06 3.6E+05 3.6E+05 2.4E+05
g12 4.1E+03 4.2E+03 3.1E+03 6.4E+03 1.3E+03 5.0E+03 g24 3.0E+03 4.3E+03 3.1E+03 1.0E+04 1.8E+03 2.2E+04

εDE 1.7E+06+2*NA
MPDE 3.1E+06+2*NA

Sum of success GDE 9.8E+06+2*NA
performance jDE-2 1.3E+07+4*NA

MDE 1.5E+06+3*NA
CMODE 2.5E+06+1*NA

εDE 67
MPDE 68

Sum of rank GDE 79
jDE-2 101
MDE 58

CMODE 95

The best result for each test function among the compared algorithms is highlighted in boldface.

note that only the results of those test functions which cause
remarkable difference on the performance of the compared
methods are summarized in this section and that other results
with negligible difference are omitted for clarity. In addition,
this section only reports on mean objective function value,
success rate, and feasible rate.

A. Effectiveness of Some Mechanisms Proposed

1) Effectiveness of the Infeasible Solution Replacement
Mechanism: In order to ascertain whether combining the
deterministic replacement with the random replacement ex-
hibits better search performance than the individual replace-
ment mechanisms, we performed computational trials using
different replacement schemes. The algorithm with only the
deterministic replacement is denoted as CMODE-1, and the
algorithm with only the random replacement is denoted as
CMODE-2. Table X provides the experimental results of test
functions g02, g21, and g23 for CMODE-1 and CMODE, and
Table XI provides the experimental results of test functions
g10, g13, g14, g20, and g21 for CMODE-2 and CMODE.

As shown in Table X, a negative impact on the performance
occurs for test functions g02, g21, and g23 when applying
CMODE-1. This may be because the diversity of the pop-
ulation is not good enough for some test cases due to the
deterministic replacement.

Additionally, the success rates drastically decrease for test
functions g10, g13, g14, g20, and g21 when implementing
CMODE-2. Moreover, with respect to test functions g10 and
g20, CMODE-2 cannot find the optimal solutions even in one

run. Based on our observation, although both CMODE and
CMODE-2 can succeed in solving test function g23 in all runs,
the results derived from CMODE are of a higher quality than
those of CMODE-2. We attribute the above behavior to the
fact that the random replacement gives rise to some important
individuals being replaced unreasonably.

It is worth remembering that the deterministic replacement
is implemented with a higher frequency than the random
replacement in CMODE. One may be interested in the per-
formance of the algorithm when applying the deterministic
replacement and the random replacement with the same prob-
ability (i.e., 0.5). Thus, another algorithm named CMODE-3
is executed for the above purpose. Table XII summarizes the
experimental results of test functions g13 and g20 for CMODE
and CMODE-3.

As shown in Table XII, CMODE-3 cannot converge to the
global optima of test functions g13 and g20 consistently, which
suggests a slight drop in the algorithm performance when
using CMODE-3.

The above discussions verify that combining these two
kinds of replacements is appropriate and that applying the
deterministic replacement with a higher frequency than the
random replacement is also effective. Moreover, the determin-
istic replacement seems to be a necessary ingredient in our
infeasible solution replacement mechanism.

2) Effectiveness of the Two Kinds of Rank Value in the
Deterministic Replacement: The deterministic replacement
proposed in Section III-B involves two kinds of rank value,
which are shown in (11). In order to verify that these two

130 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 1, FEBRUARY 2012

TABLE X

Comparison of CMODE with CMODE-1 on Test Functions g02, g21, and g23 Over 25 Runs

Prob.
Mean Objective Function Value (Success Rate) [Feasible Rate]

Prob.
Mean Objective Function Value (Success Rate) [Feasible Rate]

CMODE CMODE-1 CMODE CMODE-1
g02 −0.8036 (100%) [100%] −0.8031 (96%) [100%] g23 −400.0551 (100%) [100%] −388.0548 (96%) [100%]
g21 219.9201 (80%) [100%] 225.1593 (76%) [100%]

The better result for each test function between the two compared algorithms is highlighted in boldface.

TABLE XI

Comparison of CMODE with CMODE-2 on Test Functions g10, g13, g14, g20, and g21 Over 25 Runs

Prob.
Mean Objective Function Value (Success Rate) [Feasible Rate]

Prob.
Mean Objective Function Value (Success Rate) [Feasible Rate]

CMODE CMODE-2 CMODE CMODE-2
g10 7049.2480 (100%) [100%] 7049.3051 (0%) [100%] g20 0.2050 (100%) [0%] 0.2010 (0%) [0%]
g13 0.0539 (100%) [100%] 0.2541 (48%) [100%] g21 219.9201 (80%) [100%] 240.8767 (64%) [100%]
g14 −47.7649 (100%) [100%] −47.7111 (40%) [100%]

The better result for each test function between the two compared algorithms is highlighted in boldface.

TABLE XII

Comparison of CMODE with CMODE-3 on Test Functions g13 and g20 Over 25 Runs

Prob.
Mean Objective Function Value (Success Rate) [Feasible Rate]

Prob.
Mean Objective Function Value (Success Rate) [Feasible Rate]

CMODE CMODE-3 CMODE CMODE-3
g13 0.0539 (100%) [100%] 0.0693 (96%) [100%] g20 0.2050 (100%) [0%] 0.2049 (88%) [0%]

The better result for each test function between the two compared algorithms is highlighted in boldface.

kinds of rank value are necessary for CMODE, two addi-
tional experiments were executed. The first experiment only
contains the first rank value in CMODE and is denoted as
CMODE-4, and the second experiment only incorporates the
second rank value into CMODE and is denoted as CMODE-5.
Tables XIII and XIV summarize the results of test functions
g10, g20, g21, and g23 for CMODE and CMODE-4, and
the results of test functions g03, g13, g17, g20, and g21 for
CMODE and CMODE-5, respectively.

As shown in Table XIII, CMODE-4 has difficulty in solving
test functions g10 and g20. Besides, CMODE-4 cannot consis-
tently enter the feasible region for test functions g21 and g23.

It is evident from Table XIV that the performance of
CMODE-5 is much worse than that of CMODE. We also
observe that although both CMODE and CMODE-5 can reach
the optimal solution in all runs for test function g23, the results
provided by CMODE are of a higher quality.

Based on the results provided in the above experiments, we
can conclude that both kinds of ranking are important for the
performance of CMODE.

3) Effectiveness of DE: One may be interested in how
much of the improved performance of CMODE is due to the
use of DE. In order to answer this question, an additional
experiment named CMODE-6 was implemented in which
DE was replaced by the simplex crossover for CMODE. In
our experiment, the setting of the expanding factor in the
simplex crossover is the same as in Section IV-C. Table XV
summarizes the experimental results of test functions g02,
g09, g10, g13, g17, g18, g21, and g23 for CMODE and
CMODE-6.

As shown in Table XV, CMODE provides higher success
rates than CMODE-6 for test functions g02, g09, g10, g13,

and g17. For the rest of the three test functions (i.e., g18, g21,
and g23), CMODE-6 is unable to consistently find the feasible
solutions in all runs.

The above comparison demonstrates that under our frame-
work, DE is more suitable than the simplex crossover as the
search engine.

B. Effect of the Parameter Settings

1) Effect of the Population Size Np: Table XVI summarizes
the experimental results of test functions g02, g20, and g21
in the case of the population size Np alone being changed to
120, 150, 180, 200, and 240.

When Np = 120, the mean objective function value and
the success rate of test function g02 are much worse than
those when Np is larger than 120. Also, in the case of Np =
240, the algorithm provides the worst mean objective function
values and success rates for test functions g20 and g21.
Moreover, under this condition, the algorithm cannot converge
to the optimal solution for test function g20 even in one
run.

These results encourage the use of a value between 150 and
200 for the population size.

2) Effect of the Parameter λ: As pointed out previously,
the parameter λ should be much smaller than the population
size Np since we use a steady-state EA in this paper. In
order to analyze the impact on the performance, we varied
this parameter and performed runs using: 4, 6, 8, 10, and 12.
It is necessary to note that a bigger value of λ signifies a lower
number of iterations. Table XVII summarizes the experimental
results of test functions g02, g20, g21, and g23.

We can see that the performance degradation tends to occur
for test functions g02, g20, and g23 when using a relatively

WANG AND CAI: COMBINING MULTIOBJECTIVE OPTIMIZATION WITH DIFFERENTIAL EVOLUTION TO SOLVE OPTIMIZATION PROBLEMS 131

TABLE XIII

Comparison of CMODE with CMODE-4 on Test Functions g10, g20, g21, and g23 Over 25 Runs

Prob.
Mean Objective Function Value (Success Rate) [Feasible Rate]

Prob.
Mean Objective Function Value (Success Rate) [Feasible Rate]

CMODE CMODE-4 CMODE CMODE-4
g10 7049.2480 (100%) [100%] 7093.4229 (0%) [100%] g21 219.9201 (80%) [100%] 224.0578 (76%) [76%]
g20 0.2050 (100%) [0%] 0.1972 (0%) [0%] g23 −400.0551 (100%) [100%] −388.0288 (0%) [96%]

The better result for each test function between the two compared algorithms is highlighted in boldface.

TABLE XIV

Comparison of CMODE with CMODE-5 on Test Functions g03, g13, g17, g20, and g21 Over 25 Runs

Prob.
Mean Objective Function Value (Success Rate) [Feasible Rate]

Prob.
Mean Objective Function Value (Success Rate) [Feasible Rate]

CMODE CMODE-5 CMODE CMODE-5
g03 −1.0005 (100%) [100%] −0.7789 (0%) [100%] g20 0.2050 (100%) [0%] 0.2032 (0%) [0%]
g13 0.0539 (100%) [100%] 0.3031 (16%) [100%] g21 219.9201 (80%) [100%] 246.1158 (60%) [100%]
g17 8853.5339 (100%) [100%] 8856.5086 (88%) [100%]

The better result for each test function between the two compared algorithms is highlighted in boldface.

TABLE XV

Comparison of CMODE with Respect to CMODE-6 on Test Functions g02, g09, g10, g13, g17, g18, g21, and g23

Prob.
Mean Objective Function Value (Success Rate) [Feasible Rate]

Prob.
Mean Objective Function Value (Success Rate) [Feasible Rate]

CMODE CMODE-6 CMODE CMODE-6
g02 −0.8036 (100%) [100%] −0.7964 (0%) [100%] g17 8853.5339 (100%) [100%] 8926.2709 (0%) [100%]
g09 680.6301 (100%) [100%] 680.6309 (48%) [100%] g18 −0.8660 (100%) [100%] −0.6703 (0%) [92%]
g10 7049.2480 (100%) [100%] 9674.3599 (0%) [100%] g21 219.9201 (80%) [100%] 442.9414 (0%) [28%]
g13 0.0539 (100%) [100%] 0.0847 (84%) [100%] g23 -400.0551 (100%) [100%] −289.7387 (0%) [0%]

The better result for each test function between the two compared algorithms is highlighted in boldface.

TABLE XVI

Mean Objective Function Value, Success Rate, and Feasible Rate on Test Functions g02, g20, and g21 with Varying Np

Over 25 Runs

Prob.
Mean Objective Function Value (Success Rate) [Feasible Rate]

120 150 180 200 240
g02 −0.8003 (80%) [100%] −0.8032 (96%) [100%] −0.8036 (100%) [100%] −0.8036 (100%) [100%] −0.8036 (100%) [100%]
g20 0.2050 (100%) [0%] 0.2050 (100%) [0%] 0.2050 (100%) [0%] 0.2049 (88%) [0%] 0.2041 (0%) [0%]
g21 240.8767 (64%) [100%] 230.3984 (72%) [100%] 219.9201 (80%) [100%] 219.9201 (80%) [100%] 247.2258 (42%) [100%]

TABLE XVII

Mean Objective Function Value, Success Rate, and Feasible Rate on Test Functions g02, g20, g21, and g23 with Varying λ Over 25

Runs

Prob.
Mean Objective Function Value (Success Rate) [Feasible Rate]

4 6 8 12 15
g02 −0.8029 (92%) [100%] −0.8033 (96%) [100%] −0.8036 (100%) [100%] −0.8036 (100%) [100%] −0.8032 (96%) [100%]
g20 0.2048 (52%) [0%] 0.2050 (100%) [0%] 0.2050 (100%) [0%] 0.2050 (100%) [0%] 0.2049 (88%) [0%]
g21 219.9201 (80%) [100%] 219.9201 (80%) [100%] 219.9201 (80%) [100%] 219.9201 (80%) [100%] 237.6486 (64%) [100%]
g23 −400.0550 (80%) [100%] −400.0551 (100%) [100%] −400.0551 (100%) [100%] −400.0551 (100%) [100%] −388.0547 (96%) [100%]

TABLE XVIII

Mean Objective Function Value, Success Rate, and Feasible Rate on Test Functions g13, g20, and g21 with Varying k Over 25 Runs

Prob.
Mean Objective Function Value (Success Rate) [Feasible Rate]

8 16 22 28 34
g13 0.0539 (100%) [100%] 0.0539 (100%) [100%] 0.0539 (100%) [100%] 0.0539 (100%) [100%] 0.0693 (96%) [100%]
g20 0.2050 (100%) [0%] 0.2050 (100%) [0%] 0.2050 (100%) [0%] 0.2049 (96%) [0%] 0.2049 (88%) [0%]
g21 240.8767 (64%) [100%] 235.6375 (68%) [100%] 219.9201 (80%) [100%] 230.3984 (72%) [100%] 261.2825 (48%) [100%]

132 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 1, FEBRUARY 2012

TABLE XIX

Mean Objective Function Value, Success Rate, and Feasible Rate on Test Functions g02, g17, g20, g21, and g23 with Varying F

Over 25 Runs

Prob.
Mean Objective Function Value (Success Rate) [Feasible Rate]

0.4 0.5 0.5∼0.6 0.6 0.7
g02 −0.8001 (76%) [100%] −0.8023 (88%) [100%] −0.8036 (100%) [100%] −0.8036 (100%) [100%] −0.8020 (84%) [100%]
g17 8866.0388 (48%) [100%] 8856.4961 (96%) [100%] 8853.5339 (100%) [100%] 8853.5339 (100%) [100%] 8853.5339 (100%) [100%]
g20 0.2120 (0%) [0%] 0.2050 (100%) [0%] 0.2050 (100%) [0%] 0.2048 (56%) [0%] 0.2014 (0%) [0%]
g21 219.9201 (80%) [100%] 219.9201 (80%) [100%] 219.9201 (80%) [100%] 219.9201 (80%) [100%] 230.3984 (72%) [100%]
g23 −388.0547 (96%) [100%] −400.0551 (100%) [100%] −400.0551 (100%) [100%] −400.0551 (100%) [100%] −400.0549 (68%) [100%]

TABLE XX

Mean Objective Function Value, Success Rate, and Feasible Rate on Test Functions g02, g20, g21, and g23 with Varying Cr

Over 25 Runs

Prob.
Mean Objective Function Value (Success Rate) [Feasible Rate]

0.85 0.9 0.9∼0.95 0.95 1.0
g02 −0.8036 (100%) [100%] −0.8036 (100%) [100%] −0.8036 (100%) [100%] −0.8029 (92%) [100%] −0.7792 (32%) [100%]
g20 0.2045 (0%) [0%] 0.2049 (92%) [0%] 0.2050 (100%) [0%] 0.2050 (100%) [0%] 0.1956 (0%) [0%]
g21 267.0723 (44%) [100%] 219.9201 (80%) [100%] 219.9201 (80%) [100%] 219.9201 (80%) [100%] 198.9636 (96%) [100%]
g23 −400.0551 (88%) [100%] −400.0551 (100%) (100%) −400.0551 (100%) (100%) −400.0551 (100%) (100%) −400.0551 (100%) [100%]

small value for this parameter (i.e., 4). In addition, a relatively
big value for this parameter also has a negative effect on the
performance since the algorithm cannot find the optimal solu-
tions consistently for test functions g02, g20, and g23 and ex-
hibits the worst performance on test function g21 when λ = 15.

The results in Table XVII reveal that a value between 6 and
12 is a suitable choice for this parameter.

3) Effect of the Parameter k in the Infeasible Solution Re-
placement Mechanism: It is worth noting that k represents the
frequency of the infeasible solution replacement mechanism
being applied. For investigating the effect of the parameter k
on the search ability of CMODE, we tested five different k: 10,
16, 22, 28, and 34. The experimental results of test functions
g13, g20, and g21 are provided in Table XVIII.

As shown in Table XVIII, the mean objective function value
and the success rate of test function g21 are not good in the
case of k = 8. In the case of k = 34, the mean objective
function values and the success rates of test functions g13,
g20, and g21 are worse than the other corresponding results.

Based on the above discussion, a value between 16 and 28
is recommended for this parameter.

4) Effect of the Scaling Factor F in DE: Five experiments
have been performed to study the effect of the scaling factor
F in DE by only changing this parameter to 0.4, 0.5, 0.5∼0.6,
0.6, and 0.7, where 0.5∼0.6 denotes this parameter is ran-
domly chosen between 0.5 and 0.6. Table XIX summarizes
the experimental results of test functions g02, g17, g20, g21,
and g23.

As shown in Table XIX, in the case of F = 0.4, the
algorithm exhibits the worst performance for test functions
g02 and g17. Meanwhile, in the case of F = 0.7, the algorithm
provides the worst success rates for test functions g21 and
g23. Moreover, the algorithms with F = 0.4 and 0.7 fail to
find the optimal solution for test function g20 in any run. It
is interesting to note that the algorithm with F = 0.5 and the
algorithm with F = 0.6 are overall complementary to each
other since the former can solve test function g20 and suffers

Fig. 9. Schematic diagram of the search space, the feasible region, and the
objective function.

from premature convergence for test functions g02 and g17;
however, the latter can solve test functions g02 and g17 and
is unable to consistently reach the optimal solution for test
function g20.

The above discussion reveals that randomly choosing a
value between 0.5 and 0.6 is suitable for the parameter F.

5) Effect of the Crossover Control Parameter Cr in DE:
Table XX summarizes the experimental results of test func-
tions g02, g20, g21, and g23 in the case of the crossover
control parameter Cr alone being changed to 0.85, 0.9,
0.9∼0.95, 0.95, and 1.0. Note that 0.9∼0.95 means the value
of this parameter is randomly chosen from the interval [0.9,
0.95].

Table XX indicates that decreasing Cr causes convergence
instability. For instance, the success rates are only 0%, 44%,
and 88% for test functions g20, g21, and g23, respectively, in
the case of Cr = 0.85. In addition, in the case of Cr = 1.0
the mean objective function values and the success rates of
test functions g02 and g20 are of a much worse quality
compared with the other corresponding results, while the
algorithm provides the best mean objective function value and
success rate for test function g21. Again, the algorithm with
Cr = 0.9 and the algorithm with Cr = 0.95 exhibit the overall

WANG AND CAI: COMBINING MULTIOBJECTIVE OPTIMIZATION WITH DIFFERENTIAL EVOLUTION TO SOLVE OPTIMIZATION PROBLEMS 133

complementary performance, especially for test functions g02
and g20.

From the above discussion, a value between 0.9 and
0.95 is recommended for the crossover control parameter Cr

in DE.

VI. Conclusion and Future Work

This paper proposed an improved version of the CW
method, called CMODE, which combines multiobjective op-
timization with differential evolution to deal with COPs.
Compared with its previous version, CMODE has two main
differences: 1) instead of using the simplex crossover, CMODE
exploits DE as the search engine, and 2) a novel infeasi-
ble solution replacement mechanism is presented based on
multiobjective optimization. The effectiveness of CMODE is
demonstrated by 24 benchmark test functions collected in the
IEEE CEC2006 special session on constrained real-parameter
optimization. The experimental results suggest that CMODE
is very competitive with six state-of-the-art methods in the
community of constrained evolutionary optimization. CMODE
can provide the optimal solutions for 23 test functions and
successfully solve 22 test functions consistently. The effec-
tiveness of some mechanisms proposed in this paper and the
effect of parameter settings are also demonstrated by various
experiments. Due to its effectiveness and robustness, CMODE
should gain increasing attention from both researchers and
practitioners in the near future.

As shown in (11), we apply equal emphasis to combine
the two kinds of rank value for the deterministic replacement
in this paper. As a part of our future work, we would like
to study whether the performance of CMODE can be further
improved by altering the emphasis of these two kinds of rank
value when creating the combined rank value.

Despite multiobjective optimization being an effective tech-
nique to solve COPs, if we only use Pareto dominance as
the way to accept new individuals into the population, the
algorithm might not converge to the global optimum, which
primarily relies on the characteristics of the problem to be
solved. For instance, the features of the search space, the
feasible region, and the objective function of the problem to
be solved are shown in Fig. 9. From Fig. 9, it is clear that
the ratio between the feasible region and the entire search
space is very small. Under this condition, suppose that the
initial population does not contain any feasible solutions.
After some generations, the offspring population might include
some feasible solutions. However, such feasible solutions fail
to Pareto dominate the infeasible solutions in the parent
population based on the characteristics of the problem shown
in Fig. 9; thus, they cannot be accepted for the next population.
Therefore, in this case if the algorithm requires a new solution
to Pareto dominate an old one in order to be accepted, the
population cannot contain any feasible solutions in the end.
As a result, the algorithm does not have the ability to achieve
the global optimum in the feasible region.

Indeed, relatively little effort has been devoted to studying
the global convergence property of COEAs so far in the
community of constrained evolutionary optimization. In the
future, we intend to research the global convergence property

of COEAs intensively and to study whether there exists a
unified framework under which the algorithm holds the global
convergence property.

The source code of CMODE is written in MATLAB and
can be obtained from the first author upon request.

References

[1] Z. Cai and Y. Wang, “A multiobjective optimization-based evolutionary
algorithm for constrained optimization,” IEEE Trans. Evol. Comput., vol.
10, no. 6, pp. 658–675, Dec. 2006.

[2] Z. Michalewicz and M. Schoenauer, “Evolutionary algorithm for con-
strained parameter optimization problems,” Evol. Comput., vol. 4, no. 1,
pp. 1–32, Feb. 1996.

[3] C. A. Coello Coello, “Theoretical and numerical constraint-handling
techniques used with evolutionary algorithms: A survey of the state of
the art,” Comput. Meth. Appl. Mech. Eng., vol. 191, nos. 11–12, pp.
1245–1287, Jan. 2002.

[4] E. Mezura-Montes and C. A. Coello Coello, “A simple multimembered
evolution strategy to solve constrained optimization problems,” IEEE
Trans. Evol. Comput., vol. 9, no. 1, pp. 1–17, Feb. 2005.

[5] S. Venkatraman and G. G. Yen, “A generic framework for constrained
optimization using genetic algorithms,” IEEE Trans. Evol. Comput., vol.
9, no. 4, pp. 424–435, Aug. 2005.

[6] K. Deb, “An efficient constraint handling method for genetic algorithms,”
Comput. Methods Appl. Mech. Eng., vol. 186, nos. 2–4, pp. 311–338,
2000.

[7] C. A. Coello Coello, “Treating constraints as objectives for single-
objective evolutionary optimization,” Eng. Opt., vol. 32, no. 3, pp. 275–
308, 2000.

[8] T. P. Runarsson and X. Yao, “Search biases in constrained evolutionary
optimization,” IEEE Trans. Syst. Man Cybern. C., vol. 35, no. 2, pp.
233–243, May 2005.

[9] E. Mezura-Montes and C. A. Coello Coello, “Multiobjective-based
concepts to handle constraints in evolutionary algorithms,” in Proc. 4th
Mexican Int. Conf. Comput. Sci. (ENC), 2003, pp. 192–199.

[10] Y. Zhou, Y. Li, J. He, and L. Kang, “Multiobjective and MGG evolu-
tionary algorithm for constrained optimization,” in Proc. CEC, 2003, pp.
1–5.

[11] C. A. Coello Coello, “Constraint handling using an evolutionary multi-
objective optimization technique,” Civil Eng. Environ. Syst., vol. 17, no.
4, pp. 319–346, 2000.

[12] C. A. Coello Coello and E. Mezura-Montes, “Constraint-handling in
genetic algorithms through the use of dominance-based tournament
selection,” Adv. Eng. Informatics, vol, 16, no. 3, pp. 193–203, 2002.

[13] A. H. Aguirre, S. B. Rionda, C. A. Coello Coello, G. L. Lizáraga, and
E. M. Montes, “Handling constraints using multiobjective optimization
concepts,” Int. J. Numer. Methods Eng., vol. 59, no. 15, pp. 1989–2017,
Apr. 2004.

[14] T. Ray and K. M. Liew, “Society and civilization: An optimization
algorithm based on the simulation of social behavior,” IEEE Trans. Evol.
Comput., vol. 7, no. 4, pp. 386–396, Aug. 2003.

[15] Y. Wang, Z. Cai, Y. Zhou, and W. Zeng, “An adaptive tradeoff model
for constrained evolutionary optimization,” IEEE Trans. Evol. Comput.,
vol. 12, no. 1, pp. 80–92, Feb. 2008.

[16] Y. Wang, Z. Cai, G. Guo, and Y. Zhou, “Multiobjective optimization
and hybrid evolutionary algorithm to solve constrained optimization
problems,” IEEE Trans. Syst. Man Cybern. B Cybern., vol. 37, no. 3,
pp. 560–575, Jun. 2007.

[17] S. Tsutsui, M. Yamamure, and T. Higuchi, “Multiparent recombination
with simplex crossover in real coded genetic algorithms,” in Proc.
GECCO, 1999, pp. 657–664.

[18] J. J. Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc, P. N.
Suganthan, C. A. Coello Coello, and K. Deb, “Problem definitions and
evaluation criteria for the CEC 2006,” Special Session on Constrained
Real-Parameter Optimization, Nanyang Technol. Univ., Singapore, Tech.
Rep., 2006.

[19] R. Storn and K. Price, “Differential evolution: A simple and efficient
adaptive scheme for global optimization over continuous spaces,” Int.
Comput. Sci. Instit., Berkeley, CA, Tech. Rep. TR-95-012, 1995.

[20] R. Storn, “System design by constraint adaptation and differential
evolution,” IEEE Trans. Evol. Comput., vol. 3, no. 1, pp. 22–34, Apr.
1999.

134 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 1, FEBRUARY 2012

[21] Y. C. Lin, K. S. Hwang, and F. S. Wang, “Hybrid differential evolution
with multiplier updating method for nonlinear constrained optimization
problems,” in Proc. CEC, 2002, pp. 872–877.

[22] J. Lampinen, “A constraint handling approach for the differential evo-
lution algorithm,” in Proc. CEC, 2002, pp. 1468–1473.

[23] T. P. Runarsson and X. Yao, “Stochastic ranking for constrained evo-
lutionary optimization,” IEEE Trans. Evol. Comput., vol. 4, no. 3, pp.
284–294, Sep. 2000.

[24] E. Mezura-Montes, J. Velázquez-Reyes, and C. A. Coello Coello,
“Promising infeasibility and multiple offspring incorporated to differ-
ential evolution for constrained optimization,” in Proc. GECCO, vol. 1.
2005, pp. 225–232.

[25] R. L. Becerra and C. A. Coello Coello, “Cultured differential evolution
for constrained optimization,” Comput. Methods Appl. Mech. Eng., vol.
195, nos. 33–36, pp. 4303–4322, 2006.

[26] T. Takahama and S. Sakai, “Constrained optimization by the ε con-
strained differential evolution with gradient-based mutation and feasible
elites,” in Proc. CEC, 2006, pp. 1–8.

[27] V. L. Huang, A. K. Qin, and P. N. Suganthan, “Self-adaptive differential
evolution algorithm for constrained real-parameter optimization,” in
Proc. CEC, 2006, pp. 17–24.

[28] M. F. Tasgetiren and P. N. Suganthan, “A multi-populated differential
evolution algorithm for solving constrained optimization problem,” in
Proc. CEC, 2006, pp. 33–40.

[29] S. Kukkonen and J. Lampinen, “Constrained real-parameter optimization
with generalized differential evolution,” in Proc. CEC, 2006, pp. 207–
214.

[30] J. Brest, V. Zumer, and M. S. Maucec, “Self-adaptive differential
evolution algorithm in constrained real-parameter optimization,” in Proc.
CEC, 2006, pp. 215–222.

[31] E. Mezura-Montes, J. Velázquez-Reyes, and C. A. Coello Coello,
“Modified differential evolution for constrained optimization,” in Proc.
CEC, 2006, pp. 332–339.

[32] K. Zielinski and R. Laur, “Constrained single-objective optimization
using differential evolution,” in Proc. CEC, 2006, pp. 927–934.

[33] E. Mezura-Montes and B. Cecilia-López-Ramírez, “Comparing bio-
inspired algorithms in constrained optimization problems,” in Proc.
IEEE CEC, 2007, pp. 662–669.

[34] W. Gong and Z. Cai, “A multiobjective differential evolution algorithm
for constrained optimization,” in Proc. CEC, Jun. 2008, pp. 181–188.

[35] T. Takahama and S. Sakai, “Constrained optimization by ε constrained
differential evolution with dynamic ε-level control,” in Advances in Dif-
ferential Evolution, U. K. Chakraborty, Ed. Berlin, Germany: Springer,
2008, pp. 139–154.

[36] M. Zhang, W. Luo, and X. Wang, “Differential evolution with dynamic
stochastic selection for constrained optimization,” Information Sci., vol.
178, no. 15, pp. 3043–3074, 2008.

[37] K. Zielinski and R. Laur, “Stopping criteria for differential evolution in
constrained single-objective optimization,” in Advances in Differential
Evolution, U. K. Chakraborty, Ed. Berlin, Germany: Springer, 2008, pp.
111–138.

[38] K. Deb, “A population-based algorithm-generator for real-parameter
optimization,” Soft Comput., vol. 9, no. 4, pp. 236–253, 2005.

[39] E. Zitzler, M. Laumannns, and L. Thiele, “SPEA2: Improving the
strength Pareto evolutionary algorithm for multiobjective optimization,”
in Proc. Evol. Methods Des. Optimization Control Applicat. Ind. Prob.
(EUROGEN), 2001, pp. 95–100.

[40] S. Tang, Z. Cai, and J. Zheng, “A fast method of constructing the non-
dominated set: Arena’s principle,” in Proc. 4th ICNC, 2008, pp. 391–
395.

[41] J. Lampinen and R. Storn, “Differential evolution,” in New Optimiza-
tion Techniques in Engineering, G. C. Onwubolu and B. Babu, Eds.
Berlin/Heidelberg, Germany: Springer-Verlag, 2004, pp. 123–166.

[42] R. Gamperle, S. D. Muller, and P. Koumoutsakos, “A parameter study
for differential evolution,” in Advances in Intelligent Systems, Fuzzy
Systems, Evolutionary Computation, A. Grmela and N. Mastorakis, Eds.
WSEAS Press, 2002, pp. 293–298.

Yong Wang (M’08) was born in Hubei, China, in
1980. He received the B.S. degree in automation
from the Wuhan Institute of Technology, Wuhan,
China, in 2003, and the M.S. degree in pattern
recognition and intelligent systems and the Ph.D.
degree in control science and engineering both from
the Central South University, Changsha, China, in
2006 and 2011, respectively.

Currently, he is a Lecturer with the School of
Information Science and Engineering, CSU. His
current research interests include evolutional com-

putation, differential evolution, global optimization, constrained optimization,
multiobjective optimization, and their real-world applications.

Dr. Wang is a member of the IEEE Task Force on Nature-Inspired Con-
strained Optimization. He was a reviewer and also has published several
papers in the IEEE Transactions on Evolutionary Computation, the
Evolutionary Computation (MIT Press), and the IEEE Transactions on

Systems, Man, and Cybernetics, Part B: Cybernetics.

Zixing Cai (SM’98) received the Diploma degree
from the Department of Electrical Engineering, Jiao
Tong University, Xi’an, China, in 1962.

He has been teaching and doing research with
the School of Information Science and Engineering,
Central South University (CSU), Changsha, China,
since 1962. From May 1983 to December 1983, he
visited the Center of Robotics, Department of Elec-
trical Engineering and Computer Science, University
of Nevada, Reno. Then, he visited the Advanced Au-
tomation Research Laboratory, School of Electrical

Engineering, Purdue University, West Lafayette, IN, from December 1983 to
June 1985. From October 1988 to September 1990, he was a Senior Research
Scientist with the National Laboratory of Pattern Recognition, Institute of
Automation, Chinese Academy of Sciences, Beijing, China, and the National
Laboratory of Machine Perception, Center of Information, Beijing University,
Beijing. Since February 1989, he has become an Expert of United Nations
granted by UNIDO. From September 1992 to March 1993, he visited the
NASA Center for Intelligent Robotic Systems for Space Exploration, and
the Department of Electrical, Computer and System Engineering, Rensselaer
Polytechnic Institute, Troy, NY, as a Visiting Professor. From April 2004 to
July 2004, he visited the Institute of Informatics and Automation, Russia
Academy of Sciences, Moscow, Russia. From April 2007 to August 2007,
he visited Denmark Technical University, Lyngby, Copenhagen, Denmark, as
a Visiting Professor. He has authored or co-authored over 600 papers and
30 books/textbooks. His current research interests include intelligent systems,
artificial intelligence, intelligent computation, and robotics.

Prof. Cai has received over 30 state, province, university awards in science,
technology, and teaching. One of the most recent prizes is the State Eminent
Professor Prize of China.

